K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=5cm

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔBAE=ΔBHE

c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có

EA=EH

\(\widehat{AEK}=\widehat{HEC}\)

Do đó: ΔAEK=ΔHEC

Suy ra: EK=EC

24 tháng 5 2022

Cảm ơn bạn

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó; ΔBAE=ΔBHE

Suy ra: BA=BH và EA=EH

b: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có

EA=EH

\(\widehat{AEK}=\widehat{HEC}\)

Do đó; ΔAEK=ΔHEC

Suy ra: AK=HC

Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH

và AK=HC

nên BK=BC

hay ΔBKC cân tại B

c: BK=BC=10cm

=>AC=8cm

d: Xét ΔBKC có BA/AK=BH/HC

nên AH//KC

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔBAE=ΔBHE

=>BA=BH và EA=EH

b: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

\(\widehat{HBK}\) chung

Do đó: ΔBHK=ΔBAC

=>BK=BC

=>ΔBKC cân tại B

c: Ta có: ΔBAC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(AC^2=10^2-6^2=64\)

=>\(AC=\sqrt{64}=8\left(cm\right)\)

Ta có: BK=BC

mà BC=10cm

nên BK=10cm

21 tháng 4 2021

a. Áp dụng đ/l Pytago có

\(AC^2=BC^2-AB^2=100-36\)

=> AC = 8 (cm)
b/ Xét t/g ABE vg tại A và t/g HBE cg tại H có

BE chung

\(\widehat{ABE}=\widehat{CBE}\)

=> t/g ABE = t/g HBE
=> AB = HB ; AE = HE (*)
Xét t/g HEC vg tại H => EC > HE

=> AE < EC
c/ Xét t.g BCK có

KH vg góc BC
CA vg góc BK

CA cắt HK tại E
=> E là trực tâm t/g BCK

=> BE ⊥ CK (1)
(*) => BE là đường trung trực của AH

=> BE ⊥ AH (2)
(1) ; (2)
=> CK // AH
d/ Xét t.g BAH có AB = AH ; \(\widehat{ABH}=60^o\)

=> t/g BAH đều

21 tháng 4 2021

cảm ơn ạ!

11 tháng 3 2022

 a, Áp dụng định lý Pytago vào ΔABC vuông tại A
BC2=AB2+AC2
BC2=52+122
BC2=74
BC=√74(cm)
Vì BK là phân giác của ˆABC trong ΔABC
⇒ABBC=AKKC
⇒5√74=AKKC
⇒5+√74√74=AK+KCKC
⇒5+√74√74=ACKC=12KC
⇒5KC+√74KC=12√74
⇒(5+√74).KC=12√74
⇒KC∼7,6(cm)
⇒AK=12−7,6=4,4(cm)
b,Sưả đề : C/M : ΔABC ∼ ΔHBA
Xét ΔABC và ΔHBA ,có :
ˆBAC=ˆAHB=900
ˆB : góc chung
⇒ ΔABC ∼ ΔHBA ( gg )
ΔABK ∼ ΔHBI ( gg ) ( bn tự c/m nha )
⇒ ˆAKI=ˆHIB
mà ˆHIB=ˆAIK
⇒ˆAIK=ˆAKI
⇒ ΔAIK cân tại A d,
Xét ΔABI và ΔCBK ,có:
chúc bn học tốt nhé<3