K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2022

?

17 tháng 5 2022

thiếu đề

a: ΔPIM vuông tại I

=>IP^2+IM^2=MP^2

=>IM^2=10^2-6^2=64

=>IM=8(cm)

Xét ΔMNP vuông tại M có MI là đường cao

nên PI*PN=PM^2

=>PN=10^2/6=50/3(cm)

Xét ΔMNP vuông tại M có MI là đường cao

nên MI^2=IN*IP

=>IN=8^2/6=32/3(cm)

Xét ΔMNP vuông tại M có sin MNP=MP/PN

=10:50/3=3/5

=>góc MNP=37 độ

b: C=MN+NP+MP

=10+40/3+50/3

=10+90/3

=10+30

=40(cm)

c: Xét ΔIMP vuông tại I có IK là đường cao

nên IK*PM=IP*IM

=>IK*10=6*8=48

=>IK=4,8(cm)

a) Xét ΔNMD vuông tại M và ΔNHD vuông tại H có

ND chung

\(\widehat{MND}=\widehat{HND}\)(ND là tia phân giác của \(\widehat{MNH}\))

Do đó: ΔNMD=ΔNHD(cạnh huyền-góc nhọn)

Suy ra: MD=HD(hai cạnh tương ứng)

b) Xét ΔDHP vuông tại H có DP là cạnh huyền(DP là cạnh đối diện với \(\widehat{DHP}=90^0\))

nên DP là cạnh lớn nhất trong ΔDHP(Tính chất)

hay DP>DH

mà DH=DM(cmt)

nên DP>DM

21 tháng 3 2021

câu c thì sao bạn

a) Xét ΔNAM vuông tại M và ΔNDA vuông tại D có 

NA chung

NA=ND(gt)

Do đó: ΔNAM=ΔNDA(cạnh huyền-cạnh góc vuông)

\(\widehat{MNA}=\widehat{DNA}\)(hai góc tương ứng)

mà tia NA nằm giữa hai tia NM,NDnên NA là tia phân giác của \(\widehat{NMD}\)hay NA là tia phan giác của \(\widehat{NMP}\)(đpcm)b) Xét ΔNMD có NM=ND(gt)nên ΔNMD cân tại N(Định nghĩa tam giác cân)Xét ΔNMD cân tại N có \(\widehat{MND}=60^0\)(gt)nên ΔNMD đều(Dấu hiệu nhận biết tam giác đều)c) Ta có: ΔNMP vuông tại M(gt)nên \(\widehat{NMP}+\widehat{MPN}=90^0\)(hai góc nhọn phụ nhau)\(\Leftrightarrow\widehat{MPN}=90^0-\widehat{NMP}=90^0-60^0=30^0\)(1)Ta có: NA là tia phân giác của \(\widehat{MNP}\)(cmt)nên \(\widehat{PNA}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^0}{2}=30^0\)(2)Từ (1) và (2) suy ra \(\widehat{APN}=\widehat{ANP}\)Xét ΔANP có \(\widehat{APN}=\widehat{ANP}\)(cmt)nên ΔANP cân tại A(Định lí đảo của tam giác cân)Ta có: ΔANP cân tại A(gt)mà AD là đường cao ứng với cạnh đáy NP(gt)nên AD là đường trung tuyến ứng với cạnh NP(Định lí tam giác cân)hay D là trung điểm của NP(đpcm)
25 tháng 11 2019

a ) Xét ◇DENF có :

Góc N = Góc F = Ê = 90°

\(\Rightarrow\)◇DENF là hình chữ nhật

b ) Trong \(\Delta\)MNP có : ND là đường trung tuyến 

\(\Rightarrow\)ND = DP ( vì đường trung tuyến bằng nữa cạnh huyền )

Xét \(\Delta\)NDF và \(\Delta\)PDF có :

  • ND = DP ( cmt )
  • Góc NFD = Góc PFD ( = 90° )
  • DF : cạnh chung

\(\Rightarrow\)\(\Delta\)NDF = \(\Delta\)PDF ( cạnh huyền - cạnh góc vuông )

\(\Rightarrow\)NF = PF ( 2 cạnh tương ứng )

\(\Rightarrow\)F là trung điểm NP

25 tháng 11 2019

a) Xét tứ giác NEDF có +)  \(\widehat{ENF}=90^0\)(tam giác MNP vuông tại N)

+) \(\widehat{DFN}=90^0\)(DF vuông góc NP)

+)  \(\widehat{DEN}=90^0\)(DE vuông góc MN)

\(\Rightarrow\)tứ giác NEDF là hình chữ nhật

b) Xét \(\Delta DFN\)và \(\Delta DFP\)có:

   DF : cạnh chung

   DN = DP ( Do ND là trung tuyến của tam giác vuông MNP)

Do đó \(\Delta DFN\)\(=\Delta DFP\left(ch-cgv\right)\)

\(\Rightarrow NF=PF\)

Suy ra F là trung điểm của NP (đpcm)