\(\dfrac{2}{7}\) x \(x\) = \(\dfrac{23}{35}\) : \(x\) = \(\dfrac{1}{3}\)
giải nhanh lên nhé! <:(
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(\dfrac{31}{35}-\dfrac{4}{7}\right)\times\dfrac{8}{7}:2\\ =\left(\dfrac{31}{35}-\dfrac{4\times5}{35}\right)\times\dfrac{8}{7}:2\\ =\dfrac{11}{35}\times\dfrac{8}{7}:2\\ =\dfrac{88}{245}:2\\ =\dfrac{44}{245}\\ b,\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times\left(1-\dfrac{1}{5}\right)\\ =\left(\dfrac{2-1}{2}\right)\times\left(\dfrac{3-1}{3}\right)\times\left(\dfrac{4-1}{4}\right)\times\left(\dfrac{5-1}{5}\right)\\ =\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}\\ =\dfrac{1}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}\\ =\dfrac{1}{4}\times\dfrac{4}{5}=\dfrac{1}{5}\)
a, ( \(\dfrac{31}{35}\) - \(\dfrac{4}{7}\)) \(\times\) \(\dfrac{8}{7}\): 2
= \(\left(\dfrac{31}{35}-\dfrac{20}{35}\right)\) \(\times\) \(\dfrac{8}{7}\) : 2
= \(\dfrac{11}{35}\) \(\times\) \(\dfrac{8}{7}\) \(\times\) \(\dfrac{1}{2}\)
= \(\dfrac{44}{35}\) \(\times\) \(\dfrac{4}{7}\)
= \(\dfrac{44}{245}\)
b, ( 1 - \(\dfrac{1}{2}\)) \(\times\) ( 1 - \(\dfrac{1}{3}\)) \(\times\) ( 1 - \(\dfrac{1}{4}\)) \(\times\) ( 1 - \(\dfrac{1}{5}\))
= \(\dfrac{1}{2}\) \(\times\) \(\dfrac{2}{3}\) \(\times\) \(\dfrac{3}{4}\) \(\times\) \(\dfrac{4}{5}\)
= \(\dfrac{1}{5}\) \(\times\) \(\dfrac{2\times3\times4}{2\times3\times4}\)
= \(\dfrac{1}{5}\)
`[x+35]/1984-[x+30]/1989+[x+19]/2000+[x+23]/[1996=-2`
`<=>[x+35]/1984+1-[x+30]/1989-1+[x+19]/2000+1+[x+23]/1996+1=0`
`<=>[x+2019]/1984-[x+2019]/1989+[x+2019]/2000+[x+2019]/1996=0`
`<=>(x+2019)(1/1984-1/1989+1/2000+1/1996)=0`
`=>x+2019=0`
`<=>x=-2019`
\(\dfrac{x+35}{1984}-\dfrac{x+30}{1989}+\dfrac{x+19}{2000}+\dfrac{x+23}{1996}\text{=}-2\)
\(\Leftrightarrow\dfrac{x+35}{1984}-\dfrac{x+30}{1989}+\dfrac{x+19}{2000}+\dfrac{x+23}{1996}+3-1\text{=}0\)
\(\Leftrightarrow\left(\dfrac{x+35}{1984}+1\right)-\left(\dfrac{x+30}{1989}+1\right)+\left(\dfrac{x+19}{2000}+1\right)+\left(\dfrac{x+23}{1996}+1\right)\text{=}0\)
\(\Leftrightarrow\dfrac{x+2019}{1984}-\dfrac{x+2019}{1989}+\dfrac{x+2019}{2000}+\dfrac{x+2019}{1996}\text{=}0\)
\(\Leftrightarrow\left(x+2019\right)\left(\dfrac{1}{1984}-\dfrac{1}{1989}+\dfrac{1}{2000}+\dfrac{1}{1996}\right)\text{=}0\)
\(\Leftrightarrow\left(x+2019\right)\text{=}0\)
\(\Leftrightarrow x\text{=}-2019\)
1) PT \(\Leftrightarrow\left(\dfrac{x+1}{35}+1\right)+\left(\dfrac{x+3}{33}+1\right)=\left(\dfrac{x+5}{31}+1\right)+\left(\dfrac{x+7}{29}+1\right)\)
\(\Leftrightarrow\dfrac{x+36}{35}+\dfrac{x+36}{33}=\dfrac{x+36}{31}+\dfrac{x+36}{29}\)
\(\Leftrightarrow\left(x+36\right)\left(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}\right)=0\)
\(\Leftrightarrow x+36=0\) (Do \(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}>0\))
\(\Leftrightarrow x=-36\).
Vậy nghiệm của pt là x = -36.
2) x(x+1)(x+2)(x+3)= 24
⇔ x.(x+3) . (x+2).(x+1) = 24
⇔(\(x^2\) + 3x) . (\(x^2\) + 3x + 2) = 24
Đặt \(x^2\)+ 3x = b
⇒ b . (b+2)= 24
Hay: \(b^2\) +2b = 24
⇔\(b^2\) + 2b + 1 = 25
⇔\(\left(b+1\right)^2\)= 25
+ Xét b+1 = 5 ⇒ b=4 ⇒ \(x^2\)+ 3x = 4 ⇒ \(x^2\)+4x-x-4=0 ⇒x(x+4)-(x+4)=0
⇒(x-1)(x+4)=0⇒x=1 và x=-4
+ Xét b+1 = -5 ⇒ b=-6 ⇒ \(x^2\)+3x=-6 ⇒\(x^2\) + 3x + 6=0
⇒\(x^2\) + 2.x.\(\dfrac{3}{2}\) + (\(\dfrac{3}{2}\))2 = - \(\dfrac{15}{4}\) Hay ( \(x^2\) +\(\dfrac{3}{2}\) )2= -\(\dfrac{15}{4}\) (vô lí)
⇒x= 1 và x= 4
a) x=24/35 -2/7
x=14/35
b) x=7/8+5/6
x=41/24
c) x-11/5=3/5
x=11/5+3/5
x=14/5
tick cho mình nhé
a, \(\dfrac{3}{7}\)\(x\)- \(\dfrac{2}{3}\)\(x\) = \(\dfrac{10}{21}\)
(\(\dfrac{3}{7}\) - \(\dfrac{2}{3}\)) \(\times\) \(x\) = \(\dfrac{10}{21}\)
- \(\dfrac{5}{21}\) \(\times\) \(x\) = \(\dfrac{10}{21}\)
\(x\) = \(\dfrac{10}{21}\) : (-\(\dfrac{5}{21}\))
\(x\) = -2
b, \(\dfrac{7}{35}\) : (\(x-\dfrac{1}{3}\)) = - \(\dfrac{2}{25}\)
\(x\) - \(\dfrac{1}{3}\) = \(\dfrac{7}{35}\) : (- \(\dfrac{2}{25}\))
\(x\) - \(\dfrac{1}{3}\) = - \(\dfrac{5}{2}\)
\(x\) = - \(\dfrac{5}{2}\) + \(\dfrac{1}{3}\)
\(x\) = - \(\dfrac{13}{6}\)
c, 3.(\(x\) - \(\dfrac{1}{2}\)) - 5.(\(x\) + \(\dfrac{3}{5}\)) = - \(x\)+ \(\dfrac{1}{5}\)
3\(x\) - \(\dfrac{3}{2}\) - 5\(x\) - 3 = - \(x\) + \(\dfrac{1}{5}\)
- \(x\) + 5\(x\) - 3\(x\) = - \(\dfrac{3}{2}\) - 3 - \(\dfrac{1}{5}\)
\(x\) = - \(\dfrac{47}{10}\)
\(a,\dfrac{3}{7}x-\dfrac{2}{3}x=\dfrac{10}{21}\\ \Rightarrow x\left(\dfrac{3}{7}-\dfrac{2}{3}\right)=\dfrac{10}{21}\\ \Rightarrow x.-\dfrac{5}{21}=\dfrac{10}{21}\\ \Rightarrow x=-2\\ b,\dfrac{7}{35}:\left(x-\dfrac{1}{3}\right)=-\dfrac{2}{25}\\ \Rightarrow\dfrac{1}{5}:\left(x-\dfrac{1}{3}\right)=-\dfrac{2}{25}\\ \Rightarrow x-\dfrac{1}{3}=-\dfrac{5}{2}\\ \Rightarrow x=-\dfrac{13}{6}\\ c,3.\left(x-\dfrac{1}{2}\right)-5.\left(x+\dfrac{3}{5}\right)=-x+\dfrac{1}{5}\\ \Rightarrow3x-\dfrac{3}{2}-5x+5=-x+\dfrac{1}{5}\)
\(\Rightarrow x\left(3-5\right)-\dfrac{3}{2}+5=-x+\dfrac{1}{5}\\ \Rightarrow-2x-\dfrac{13}{2}=-x+\dfrac{1}{5}\\ \Rightarrow-x-\dfrac{13}{5}=\dfrac{1}{5}\\ \Rightarrow x=\dfrac{1}{5}-\dfrac{13}{5}\\ \Rightarrow x=-\dfrac{12}{5}.\)
\(x+\dfrac{1}{5}-\dfrac{3}{7}=\dfrac{6}{35}\)
\(x+\dfrac{1}{5}=\dfrac{6}{35}+\dfrac{3}{7}\)
\(x+\dfrac{1}{5}=\dfrac{6}{35}+\dfrac{15}{35}\)
\(x+\dfrac{1}{5}=\dfrac{21}{35}\)
\(x=\dfrac{21}{35}-\dfrac{1}{5}\)
\(x=\dfrac{21}{35}-\dfrac{7}{35}\)
\(x=\dfrac{14}{35}=\dfrac{2}{5}\)
\(x\) + \(\dfrac{1}{5}\) - \(\dfrac{3}{7}\) = \(\dfrac{6}{35}\)
\(x\) + \(\dfrac{1}{5}\) = \(\dfrac{6}{35}\) + \(\dfrac{3}{7}\)
\(x\) + \(\dfrac{1}{5}\) = \(\dfrac{3}{5}\)
\(x\) = \(\dfrac{3}{5}\) - \(\dfrac{1}{5}\)
\(x\) =\(\dfrac{2}{5}\)
Đề sai rồi bạn
cô giáo tui ghi kiểu này:
\(\dfrac{2}{7}\) x \(x\) = \(\dfrac{2}{3}\) \(\dfrac{3}{5}\) : \(x\) = \(\dfrac{1}{3}\)