K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

\(a+b+c=0\Leftrightarrow a+b=-c\) thay vào : 

\(a^3+b^3+c\left(a^2+b^2\right)-abc=\left(a+b\right)^3-3ab\left(a+b\right)+c\left[\left(a+b\right)^2-2ab\right]-abc\)

\(=-c^3-3ab.\left(-c\right)+c\left[c^2-2ab\right]-abc\)

\(=-c^3+3abc+c^3-2abc-abc=0\)

29 tháng 5 2020

hello

17 tháng 7 2018

Ta có :

\(M=a^3+b^3+c\left(a^2+b^2\right)-abc\)

\(M=a^3+b^3+a^2c+b^2c-abc\)

\(=\left(a^3+a^2c\right)+\left(b^3+b^2c\right)-abc\)

\(=a^2\left(a+c\right)+b^2\left(b+c\right)-abc\)

\(=a^2\left(-b\right)+b^2\left(-a\right)-abc\)

\(=-ab\left(a+b+c\right)=0\)

17 tháng 7 2018

Ta có: \(a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;a+c=-b\)

\(M=a^3+b^3+c.\left(a^2+b^2\right)-abc\)

\(M=a^3+b^3+ca^2+cb^2-abc\)

\(M=a^2.\left(a+c\right)+b^2.\left(b+c\right)-abc\)

\(M=a^2.\left(-b\right)+b^2.\left(-a\right)\)

\(M=-a^2b-b^2a\)

\(M=-ab.\left(a+b\right)\)

\(M=-ab.\left(-c\right)\)

\(M=abc\)

Tham khảo nhé~

4 tháng 10 2019

\(M=a^3+b^3+c\left(a^2+b^2\right)-abc\)

\(=a^3+b^3+a^2c+b^2c-abc\)

\(=\left(a^3+a^2c\right)+\left(b^3+b^2c\right)-abc\)

\(=a^2\left(a+c\right)+b^2\left(b+c\right)-abc\)

\(=-ba^2-ab^2-abc\)

\(=-ab\left(a+b+c\right)=0\)

30 tháng 6 2018

Ta có A=\(\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

=\(2\left(a+b+c\right)+\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-\frac{ab}{c}-\frac{bc}{a}-\frac{ca}{b}=2\left(a+b+c\right)\)

30 tháng 6 2018

\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2=a^2-ab+b^2+3ab\left(1-2ab\right)+6a^2b^2\)

=\(\left(a+b\right)^2-3ab+3ab-6a^2b^2+6a^2b^2=1\)

2) Ta có \(A=\left(a-1\right)\left(b-1\right)\left(c-1\right)=abc-ab-bc-ca+a+b+c-1=0\)

6 tháng 11 2016

\(a+b+c=0\Leftrightarrow a=-b-c\Leftrightarrow a^2=b^2+c^2+2bc\Leftrightarrow a^2-b^2-c^2=2bc\)

Tương tự : \(b^2-a^2-c^2=2ac\) ; \(c^2-a^2-b^2=2ab\)

Ta có : \(T=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}=\frac{a^2}{2bc}+\frac{b^2}{2ca}+\frac{c^2}{2ab}\)

\(=\frac{1}{2abc}\left(a^3+b^3+c^3\right)\)(1)

Ta sẽ chứng minh nếu a + b + c = 0 thì \(a^3+b^3+c^3=3abc\)

Ta có \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

= 0

=> \(a^3+b^3+c^3=3abc\) thay vào (1) được : 

\(T=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)

30 tháng 11 2015

\(a.\) Với  \(a+b+c=0\)  thì  \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=\frac{-abc}{abc}=-1\)

\(b.\)   Công thức tổng quát:  \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Ta có:

\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)

\(\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{1}{x+1}-\frac{1}{x+2}\)

\(\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{1}{x+2}-\frac{1}{x+3}\)

\(\frac{1}{\left(x+3\right)\left(x+4\right)}=\frac{1}{x+3}-\frac{1}{x-4}\)

\(\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+4}-\frac{1}{x+5}\)

Do đó, suy ra được:  \(A=\frac{1}{x}-\frac{1}{x+5}=\frac{x+5-x}{x\left(x+5\right)}=\frac{5}{x\left(x+5\right)}\)

 

 

14 tháng 10 2017

Sửa đề cho nó đẹp

\(\frac{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}\)

\(=\frac{3\left(a-b\right)\left(a-c\right)\left(c-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=-3\)

3 tháng 11 2018

em ms hok lớp 1

15 tháng 11 2016

Phân tích mẫu thức thành nhân tử :

\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)+b^2c-ab^2+ac^2-bc^2\)

\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)\)

\(=\left(b-c\right)\left(a^2+bc-ab-ac\right)\)

\(=\left(b-c\right)\left[a\left(a-b\right)-c\left(a-b\right)\right]=\left(b-c\right)\left(a-c\right)\left(a-b\right).\)

Do đó : \(A=\frac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Nhận xét : Nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz.\)

Đặt \(b-c=x,c-a=y,a-b=z\) thì \(x+y+z=0\)

Theo nhận xét trên : \(A=\frac{x^3+y^3+z^3}{-xyz}=\frac{3xyz}{-xyz}=-3.\)

15 tháng 11 2016

Tử:

(b - c)3 + (c - a)3 + (a - b)3

= (b - c + c - a + a - b)3 - 3(b - c + c - a)(b - c + a - b)(c - a + a - b)

= 0 - 3(b - a)(a - c)(c - b)

= 3(a - b)(a - c)(c - b)

Mẫu:

a2(b - c) + b2(c - a) + c2(a - b)

= a2(b - c) + b2c - ab2 + ac2 - bc2

= a2(b - c) - a(b2 - c2) + bc(b - c)

= a2(b - c) - a(b - c)(b + c) + bc(b - c)

= (b - c)(a2 - ab - ac + bc)

= (b - c)[a(a - b) - c(a - b)]

= (b - c)(a - b)(a - c)

\(A=\frac{3\left(a-b\right)\left(a-c\right)\left(c-b\right)}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}\)

\(=\frac{3\left(c-b\right)}{b-c}\)

14 tháng 10 2018

+) Xét tử thức: \(a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)+c^2\left(a^2-b^2\right)\)

\(=a^3\left(b^2-c^2\right)+\left(b^3c^2-b^2c^3\right)-\left(a^2b^3-a^2c^3\right)\)

\(=a^3\left(b-c\right)\left(b+c\right)+b^2c^2\left(b-c\right)-a^2\left(b-c\right)\left(b^2+bc+c^2\right)\)

\(=\left(b-c\right)\left(a^3b+a^3c+b^2c^2-a^2b^2-a^2bc-a^2c^2\right)\)

\(=\left(b-c\right)\left[\left(a^3b-a^2bc\right)+\left(a^3c-a^2c^2\right)+\left(b^2c^2-a^2b^2\right)\right]\)

\(=\left(b-c\right)\left[a^2b\left(a-c\right)+a^2c\left(a-c\right)-b^2\left(a-c\right)\left(a+c\right)\right]\)

\(=\left(b-c\right)\left(a-c\right)\left(a^2b+a^2c-ab^2-b^2c\right)\)

\(=\left(b-c\right)\left(a-c\right)\left[ab\left(a-b\right)+c\left(a-b\right)\left(a+b\right)\right]\)

\(=\left(b-c\right)\left(a-c\right)\left(a-b\right)\left(ab+bc+ca\right)\)

+) Xét mẫu thức: \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)+b^2c-bc^2-ab^2+ac^2\)

\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b-c\right)\left(b+c\right)\)

\(=\left(b-c\right)\left(a^2+bc-ab-ac\right)=\left(b-c\right)\left[\left(a^2-ac\right)-\left(ab-bc\right)\right]\)

\(=\left(b-c\right)\left[a\left(a-c\right)-b\left(a-c\right)\right]=\left(b-c\right)\left(a-c\right)\left(a-b\right)\)

Từ đó; ta có: 

\(\frac{a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)+c^3\left(a^2-b^2\right)}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}=\frac{\left(b-c\right)\left(a-c\right)\left(a-b\right)\left(ab+bc+ca\right)}{\left(b-c\right)\left(a-c\right)\left(a-b\right)}\)

\(=ab+bc+ca\). KL:...