Cho hình vuông ABCD cạnh a và điểm N trên cạnh AB . Tia CN cắt tia DA tại E , kẻ Cx vuông góc với CE cắt tia AB tại F .
1) Cm : E , A , C , F cung thuoc mot duong tron .
2) Cm CE = CF , BN . DE luôn không đổi khi N thay đổi vị trí trên cạnh AB .
3) M trung điểm của EF . Cm D , B , M thẳng hàng .
a. Ta thấy \(\widehat{EAF}=\widehat{ECF}=90^o\Rightarrow\) C, A thuộc đường tròn đường kính EF hay E, A, C, F cùng thuộc đường tròn đường kính EF.
b. Do E, A, C, F cùng thuộc một đường tròn nên \(\widehat{CEF}=\widehat{CAF}=45^o\) (Góc nội tiếp cùng chắn một cung)
Lại có \(\widehat{ECF}=90^o\Rightarrow\) \(\Delta ECF\) vuông cân tại C hay CE = CF.
Do BC // DE nên \(\widehat{NCB}=\widehat{CED}\Rightarrow\Delta NBC\sim\Delta CDE\left(g-g\right)\)
\(\Rightarrow\frac{NB}{CD}=\frac{BC}{DE}\Rightarrow BN.DE=CD.BC=a^2\) không đổi.
c. Ta thấy BCFM là tứ giác nội tiếp nên \(\widehat{BCM}+\widehat{CMB}=\widehat{BFM}+\widehat{CFB}=\widehat{MFC}=45^o\)
Gọi tia đối của tia BM là Bx, ta có \(\widehat{CBx}=45^o;\widehat{CBD}=45^o\Rightarrow\)D thuộc tia đối tia BM. Vậy D, B, M thẳng hàng.
toi chiu ,toi di ngu day