phân tích đa thức thành nhân tử\(x^4+x^2+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+x^3+2x^2+x+1=\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\\ =x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+1\right)\left(x^2+x+1\right)\)
Dễ thấy \(x^2+1>0\); \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) nên ta không thể phân tích thêm được nữa.
Vậy \(x^4+x^3+2x^2+x+1=\left(x^2+1\right)\left(x^2+x+1\right)\).
\(x^5+x+1\)
\(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(x^2\left(x-3\right)-4x+12=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
=x²(x-3)-4x+3.4
=x²(x-3)-4(x+3)
=x²(x-3)+4(x-3)
=(x-3)(x²+4)
=(x-3)(x²+2²)
=(x-3)(x-2)(x+2)
\(x^3-2xy-x^2y+2y^2=\left(x^3-x^2y\right)-\left(2xy-2y^2\right)\)
\(=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x^2-2y\right)\left(x-y\right)\)
\(=x^2\left(x-y\right)-2y\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-2y\right)\)
\(x^4-81=\left(x^2-9\right)\left(x^2+9\right)=\left(x-3\right)\left(x+3\right)\left(x^2+9\right)\)
\(=\left(x^2-9\right)\left(x^2+9\right)=\left(x-3\right)\left(x+3\right)\left(x^2+9\right)\)
\(=x^2\left(x+y\right)-\left(x+y\right)=\left(x^2-1\right)\left(x+y\right)=\left(x-1\right)\left(x+1\right)\left(x+y\right)\)
Câu 1:
\(=x^2-\left(y-4\right)^2\)
\(=\left(x-y+4\right)\cdot\left(x+y-4\right)\)
<=>x4-x+x2 +x+1= x (x-1) (x2+x+1) + (x2+x+1) = (x2+x+1)(x2-x+1)
chắc có lẽ đúng đó