Chứng minh rằng : Sin A + Cos A$$2( sin^3 A+ cos ^3 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\dfrac{sin\alpha}{1+cos\alpha}+\dfrac{1+cos\alpha}{sin\alpha}\)
\(=\dfrac{sin^2\alpha+\left(1+cos\alpha\right)^2}{sin\alpha\left(1+cos\alpha\right)}\)
\(=\dfrac{sin^2\alpha+1+2cos\alpha+cos^2\alpha}{sin\alpha\left(1+cos\alpha\right)}\\ =\dfrac{\left(sin^2\alpha+cos^2\alpha\right)+1+2cos\alpha}{sin\alpha\left(1+cos\alpha\right)}\\ =\dfrac{2+2cos\alpha}{sin\alpha\left(1+cos\alpha\right)}\\ =\dfrac{2\left(1+cos\alpha\right)}{sin\alpha\left(1+cos\alpha\right)}\\ =\dfrac{2}{sin\alpha}=VP\left(dpcm\right)\)
\(sinA.cosB.cosC+sinB.cosC.cosA+sinC.cosB.cosA\)
\(=cosC\left(sinA.cosB+cosA.sinB\right)+sinC.cosB.cosA\)
\(=cosC.sin\left(A+B\right)+sinC.cosB.cosA\)
\(=cosC.sinC+sinC.cosA.cosB\)
\(=sinC\left(cosC+cosA.cosB\right)=sinC\left(-cos\left(A+B\right)+cosA.cosB\right)\)
\(=sinC\left(-cosA.cosB+sinA.sinB+cosA.cosB\right)\)
\(=sinA.sinB.sinC\)
Vì A+B+C=180^{\circ}A+B+C=180∘ nên V T=\dfrac{\sin ^{3} \dfrac{B}{2}}{\cos \left(\dfrac{180^{\circ}-B}{2}\right)}+\dfrac{\cos ^{3} \dfrac{B}{2}}{\sin \left(\dfrac{180^{\circ}-B}{2}\right)}-\dfrac{\cos \left(180^{\circ}-B\right)}{\sin B} \cdot \tan BVT=cos(2180∘−B)sin32B+sin(2180∘−B)cos32B−sinBcos(180∘−B)⋅tanB.
V T=\dfrac{\sin ^{3} \dfrac{B}{2}}{\cos \left(\dfrac{180^{\circ}-B}{2}\right)}+\dfrac{\cos ^{3} \dfrac{B}{2}}{\sin \left(\dfrac{180^{\circ}-B}{2}\right)}-\dfrac{\cos \left(180^{\circ}-B\right)}{\sin B} \cdot \tan BVT=cos(2180∘−B)sin32B+sin(2180∘−B)cos32B−sinBcos(180∘−B)⋅tanB =\dfrac{\sin ^{3} \dfrac{B}{2}}{\sin \dfrac{B}{2}}+\dfrac{\cos ^{3} \dfrac{B}{2}}{\cos \dfrac{B}{2}}-\dfrac{-\cos B}{\sin B} \cdot \tan B=\sin ^{2} \dfrac{B}{2}+\cos ^{2} \dfrac{B}{2}+1=2=V P=sin2Bsin32B+cos2Bcos32B−sinB−cosB⋅tanB=sin22B+cos22B+1=2=VP
Suy ra điều phải chứng minh.
1) Vì \(\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{\dfrac{đối}{huyền}}{\dfrac{kề}{huyền}}=\dfrac{đối}{kề}\)
nên \(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}\)
2) Vì \(\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{\dfrac{kề}{huyền}}{\dfrac{đối}{huyền}}=\dfrac{kề}{đối}\)
nên \(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}\)
Đề sai rồi b