K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2: 

x+x:0,5+x:0,25=14

=>x+2x+4x=14

=>7x=14

hay x=2

29 tháng 7 2017

Xét hình thang cân ABCD có đáy nhỏ AB = m, đáy lớn CD = n, đường cao AH = BK = h, DH = KC = a ---> CD = n = m + 2a 
Theo định lý Pythagore, ta có : 
AC^2 = AH^2 + HC^2 (1) 
AD^2 = AH^2 + DH^2 (2) 
---> AC^2 - AD^2 = HC^2 - DH^2 = (m+a)^2 - a^2 = m^2 + 2m.a = m(m+2a) = m.n = AB.CD (đpcm)

đơn giản như đan rổ

3 tháng 1 2018

a) Xét tứ giác AMIN, ta có:

\(\widehat{A}\) = 90o (△ABC vuông tại A)

\(\widehat{M}\) = 90o (IM ⊥ AB tại M)

\(\widehat{N}\) = 90o (IN ⊥ AC tại N)

Vậy tứ giác AMIN là hình chữ nhật.

b) *Xét △AIC, ta có:

IA = IC (AI là đường trung tuyến của △vABC)

⇒ △AIC cân tại A

Mà IN ⊥ AC (gt)

Nên IN là đường cao của △AIC

⇒ Đồng thời là đường trung tuyến

⇒ AN = NC

*Xét tứ giác ADCI, ta có:

IN = ND (gt)

AN = NC (cmt)

⇒ ADCI là hình bình hành

Mà AI = IC (cmt)

Vậy ADCI là hình thoi.

c) Gọi O là giao điểm BN và AI

Vì ADCI là hthoi (cmt)

⇒ AI // CD

\(\widehat{AIN}\) = \(\widehat{CDN}\) (so le trong)

*Cm: △INP = △DNK (g.c.g)

⇒ IP = DK

*Vì ADCI là hthoi (cmt)

⇒ AI = DC

*Ta có:

AN = NC (cmt)

⇒ BN là đường trung tuyến

*Xét △ABC, ta có:

AI, BN là đường trung tuyến (gt,cmt)

Mà AI, BN cắt nhau tại B (theo cách vẽ)

Nên P là trọng tâm của △ABC

\(\dfrac{IP}{AI}\)= \(\dfrac{1}{3}\)

Hay \(\dfrac{DK}{DC}\)= \(\dfrac{1}{3}\)