chung minh dau hieu 5 cua hinh vuong
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hình thang cân ABCD có đáy nhỏ AB = m, đáy lớn CD = n, đường cao AH = BK = h, DH = KC = a ---> CD = n = m + 2a
Theo định lý Pythagore, ta có :
AC^2 = AH^2 + HC^2 (1)
AD^2 = AH^2 + DH^2 (2)
---> AC^2 - AD^2 = HC^2 - DH^2 = (m+a)^2 - a^2 = m^2 + 2m.a = m(m+2a) = m.n = AB.CD (đpcm)
đơn giản như đan rổ
a) Xét tứ giác AMIN, ta có:
\(\widehat{A}\) = 90o (△ABC vuông tại A)
\(\widehat{M}\) = 90o (IM ⊥ AB tại M)
\(\widehat{N}\) = 90o (IN ⊥ AC tại N)
Vậy tứ giác AMIN là hình chữ nhật.
b) *Xét △AIC, ta có:
IA = IC (AI là đường trung tuyến của △vABC)
⇒ △AIC cân tại A
Mà IN ⊥ AC (gt)
Nên IN là đường cao của △AIC
⇒ Đồng thời là đường trung tuyến
⇒ AN = NC
*Xét tứ giác ADCI, ta có:
IN = ND (gt)
AN = NC (cmt)
⇒ ADCI là hình bình hành
Mà AI = IC (cmt)
Vậy ADCI là hình thoi.
c) Gọi O là giao điểm BN và AI
Vì ADCI là hthoi (cmt)
⇒ AI // CD
⇒ \(\widehat{AIN}\) = \(\widehat{CDN}\) (so le trong)
*Cm: △INP = △DNK (g.c.g)
⇒ IP = DK
*Vì ADCI là hthoi (cmt)
⇒ AI = DC
*Ta có:
AN = NC (cmt)
⇒ BN là đường trung tuyến
*Xét △ABC, ta có:
AI, BN là đường trung tuyến (gt,cmt)
Mà AI, BN cắt nhau tại B (theo cách vẽ)
Nên P là trọng tâm của △ABC
⇒ \(\dfrac{IP}{AI}\)= \(\dfrac{1}{3}\)
Hay \(\dfrac{DK}{DC}\)= \(\dfrac{1}{3}\)