Chứng minh: m+3m2+2m3 chia hết cho 6 với m là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
m^3+11m
=m^3+12m-m
=12m+m^3-m
=12m+m(m^2-1)
=12m+m.(m+1).(m-1)
xét tích m(m+1)(m-1) là tích của 3 số nguyên liên tiếp
mà tích 3 số nguyên liên tiếp luôn chia hết cho 6
=>m(m-1)(m1) chia hết cho 6 (1)
do 12 chia hết cho 6 => 12m chia hết cho 6(2)
từ (1) và (2) => m(m-1)(m+1)+12m chia hết cho 6
<=> m^3+11m chia hết cho 6
vậy m^3+11m chia hết cho 6 (đpcm)
t
**** m chia hết cho 3 => m^2 chia hết cho 3 ( m^2 = m.m )
Tt: n^2 chia hết cho 3
=> m^2 + n^2 chia hết cho 3
**** định lí đảo
m^2 + n^2 chia hết cho 3
Xét: a chia 3 có 3 trườg hợp số dư: 0;1;2 => a^2 có 2 trườg hợp số dư là 0;1 < cm: đặt a = 3k + x với x là các trườg hợp số dư. sau đó tìm được số dư khi bình phương a >
=> m^2 và n^2 cũng có các khả năng số dư đó khi chia cho 3
Xét các trườg hợp:
m^2 và n^2 chia 3 cùng dư 1 => m^2 + n^2 chia 3 dư 2 => loại
m^2 và n^2 1 số chia 3 dư 0 và 1 số chia 3 dư 1 => m^2 + n^2 chia 3 dư 1 => loại
=> m^2 và n^2 cùng chia hết cho 3
hay m và n cùng chia hết cho 3
Ta có:
m+3m2+2m3=m.(1+3m+2m2)
=m.[1+(m+2m)+2m2]
=m.[(1+m)+2m.(m+1)]
=m.[(m+1).(2m+1)]
=m.(m+1).(2m+1)
Ta thấy: m.(m+1).(m+2) và (m-1).m.(m+1) là tích của 3 số tự nhiên liên tiếp nên chúng đều chia hết cho6=>Hiệu của chúng chia hết cho 6
=>m.(m+1).(m+2)-(m-1).m.(m+1) chia hết cho 6
Lấy m.(m+1) chung thì ta có:
=>m.(m+1).[m+2-(m-1)] chia hết cho 6
=>m+3m2+2m3 chia hết cho 6 với m là số tự nhiên
m+3m2+2m3 =m (1 + 3m + 2m2) = m.(1+ m + 2m + 2m2) = m [(1+m) + 2m (1+ m)]
= m. (m+1).(2m+ 1) = m.(m+ 1). [(m + 2) + (m - 1)] = m(m+1)(m+2) - (m - 1)m (m + 1)
Nhận xét: m(m+1)(m+2) ; (m - 1)m (m + 1) đều chia hết cho 6 vì đều là tích của 3 số tự nhiên liên tiếp
=> m(m+1)(m+2) - (m - 1)m (m + 1) chia hết cho 6
=> m+3m2+2m3 chia hết cho 6 với m là số tự nhiên