K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

B = 5x - x2

B = -x2 + 5x

-B = x2 - 5x

-4B = 4x2 - 20x

-4B = (2x-5)2 -25

B = -(2x-5)2 / 4 + 6,25

GTLN của B = 6,25 <=> 2x-5 = 0 => x = 5/2

30 tháng 10 2016

A = 2x2 + 10x - 1

2A = 4x2 + 20x - 2

2A = (2x+5)2 - 27

A = (2x+5)2 / 2 - 13,5

GTNN của A là -13,5 <=> 2x+5 = 0 => x = -5/2

17 tháng 7 2018

a,<=>   x2-4x+22+y2-8y+42-14

<=> (x2-2x2+22)+(y2-2x4+42)-14

<=> (x-2)2+(y-4)2-14 

Vì (x-2)2+(y-4)2>= 0

=> F >= -14 => MIn F = -14 <=> x=2, y=4

b, <=> (x2+52+(2y)2-4xy+10x-20y) +(y2-2y+1)+2

<=> (x+5-2y )2+(y-1)2+2 

Vì (x+5-2y) 2+(y-1)2 >= 0

=> G >= 2 => Min =2 <=> y=1, x= -3

17 tháng 7 2018

\(F=x^2-4x+y^2-8y+6\)

\(F=\left(x^2-2.2x+2^2\right)+\left(y^2-2.4.y+4^2\right)-14\)

\(F=\left(x-2\right)^2+\left(y-4\right)^2-14\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\left(y-4\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\forall x\)

\(F=-14\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=4\end{cases}}\)

Vậy \(F_{min}=-14\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)

19 tháng 7 2017

Ta có : A = 2x2 + 10x - 15 

= 2x2 + 10x - \(\frac{50}{4}-\frac{5}{2}\)

= 2(x2 + 5x - \(\frac{25}{4}\)) - \(\frac{5}{2}\)

= 2(x - \(\frac{5}{2}\) )2 - \(\frac{5}{2}\)

Mà ; 2(x - \(\frac{5}{2}\) )2  \(\ge0\forall x\)

Nên : 2(x - \(\frac{5}{2}\) )2 - \(\frac{5}{2}\) \(\ge-\frac{5}{2}\forall x\)

Vậy Amin = \(-\frac{5}{2}\) , dấu bằng xảy ra khi x = \(\frac{5}{2}\)

25 tháng 7 2018

a) Đặt  \(A=-x^2+9x-12\)

\(-A=x^2-9x+12\)

\(-A=\left(x^2-9x+\frac{81}{4}\right)-\frac{33}{4}\)

\(-A=\left(x-\frac{9}{2}\right)^2-\frac{33}{4}\)

Mà  \(\left(x-\frac{9}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge-\frac{33}{4}\Leftrightarrow A\le\frac{33}{4}\)

Dấu "=" xảy ra khi :  \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)

Vậy  \(A_{Max}=\frac{33}{4}\Leftrightarrow x=\frac{9}{2}\)

b) Đặt \(B=2x^2+10x-1\)

\(B=2\left(x^2+5x+\frac{25}{4}\right)-\frac{29}{4}\)

\(B=2\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\)

Mà  \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow B\ge-\frac{29}{4}\)

Dấu "=" xảy ra khi :  \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy  \(B_{Min}=-\frac{29}{4}\Leftrightarrow x=-\frac{5}{2}\)

25 tháng 7 2018

c) Đặt  \(C=\left(2x+6\right)\left(x-1\right)\)

\(C=2x^2-2x+6x-6\)

\(C=2x^2+4x-6\)

\(C=2\left(x^2+2x+1\right)-8\)

\(C=2\left(x+1\right)^2-8\)

Mà  \(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow C\ge-8\)

Dấu "=" xảy ra khi :  \(x+1=0\Leftrightarrow x=-1\)

Vậy  \(C_{Min}=-8\Leftrightarrow x=-1\)

d) Đặt  \(D=3x-2x^2\)

\(-2D=4x^2-6x\)

\(-2D=\left(4x^2-6x+\frac{9}{4}\right)-\frac{9}{4}\)

\(-2D=\left(2x-\frac{3}{2}\right)^2-\frac{9}{4}\)

Mà  \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-2D\ge-\frac{9}{4}\)

\(\Leftrightarrow D\le\frac{9}{8}\)

Dấu "=" xảy ra khi :  \(2x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{4}\)

Vậy  \(D_{Max}=\frac{9}{8}\Leftrightarrow x=\frac{3}{4}\)

7 tháng 11 2018

a) \(A=\left(x+1\right)\left(2x-1\right)\)

\(A=2x^2+x-1\)

\(A=2\left(x^2+\frac{1}{2}x-\frac{1}{2}\right)\)

\(A=2\left[x^2+2\cdot x\cdot\frac{1}{4}+\left(\frac{1}{4}\right)^2-\frac{9}{16}\right]\)

\(A=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\)

\(A=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge\frac{-9}{8}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{4}\)

Vậy Amin = -9/8 khi và chỉ khi x = -1/4

b) \(B=4x^2-4xy+2y^2+1\)

\(B=\left(2x\right)^2-2\cdot2x\cdot y+y^2+y^2+1\)

\(B=\left(2x-y\right)^2+y^2+1\ge1\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y=0\\y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}\Rightarrow}}x=y=0\)

Vậy Bmin = 1 khi và chỉ khi x = y = 0

15 tháng 6 2017

Ta có:

\(\left(\frac{1}{5}+\frac{1}{3}+\frac{3}{10}\right)+-\frac{1}{2}=\frac{1}{5}+\frac{1}{3}+\frac{3}{10}\)\(-\frac{1}{2}\)

=\(\frac{6}{30}+\frac{10}{30}+\frac{9}{30}-\frac{15}{30}=\frac{6+10+9-15}{30}=\frac{10}{30}=\frac{1}{3}\)