K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2016

Ta có:

3 . (a + 4b) + (10a + b) = 3a + 12b + 10a + b = (3a + 10a) + (12b + b) = 13a + 13b = 13 . (a + b) chia hết cho 13.

Mà a + 4b chia hết cho 13 nên 3 . (a + 4b) chia hết cho 13 mà tổng 3 . (a + 4b) + (10a + b) cũng chia hết cho 13

suy ra 10a + b chia hết cho 13

17 tháng 8 2016

Giả sử: abc+ ( 2a+3b+c) chia hết cho 7, ta có:

abc+ ( 2a+3b+c)=  a.100+b.10+c+2a+3b+c

                            =   a.98+7.b 

Vì a.98 chia hết cho 7 ( 98 chia hết cho 7 ), 7.b chia hết cho 7 => a.98+7.b chia hết cho 7

=> abc+ ( 2a+3b+c) chia hết cho 7 

Mà theo đầu bài abc chia hết cho 7 => 2a+3b+c chia hết cho 7 (theo tính chất chia hết của một tổng)

17 tháng 8 2016

 A,Theo bài ra ta có:

abc=100a+10b+c

Lấy abc-2a+3b+c ta được : 98a+7b

Suy ra : 98a+7b=7(28a+b) chia hết cho 7

Vì abc chia hết cho 7 nên ta có thể suy ra 2a+3b+c chia hết cho 7

B, Theo bài ra ta có:

ab=10a+b

Lấy ab - 3a+b ta được : 7a chia hết cho7

Vì ab chia hết cho 7 nên ta suy ra 3a+b chia hết cho 7

Nếu muốn chứng minh ngược lại thì phân tích các số ab , abc thành tổng của các số 2a+3b+c , 3a+b

12 tháng 4 2016

a+10b chia hết cho 17

=>2a+20b chia hết cho 17(17 và 2 nguyên tố cùng nhau mới có trường hợp này)

cố định đề bài 2a+3b chia hết cho 17

nếu hiệu 2a+20b-(2a+3b) chia hết cho 17 thì 100% 2a+20b chia hết cho 17 cũng như a+10b chia hết cho 17

hiệu là 17b,có 17 chia hết cho 17=>17b chia hết 17

vậy a+10b chia hết cho 17 nếu cái vế kia xảy ra

ngược lai bạn cũng chứng minh tương tự nhá,ko khác đâu

chúc học tốt

11 tháng 7 2018

Ta có: \(3a+4b⋮11\Rightarrow4.\left(3a+4b\right)⋮11\Rightarrow12a+16b⋮11\)

\(\Rightarrow\left(a+5b\right)+\left(11a+11b\right)⋮11\)

\(\Rightarrow\left(a+5b\right)+11.\left(a+b\right)⋮11\)

\(\Rightarrow a+5b⋮11\)

A)Ta có: (3a + 4b) ⋮ 7 ⇒ 2 . (3a + 4b) ⋮ 7 ⇒ (6a + 8b) ⋮ 7 (1)

Ta lại có:

(6a + 8b) + (a + 6b)

=(6a + a) + (8b + 6b)

=7a + 14b

=7a + 7 . 2 . b

=7 . (a + 2b) ⋮ 7 (vì 7 ⋮ 7)

⇒(6a + 8b) + (a + 6b) ⋮ 7 mà (6a + 8b) ⋮ 7 (theo (1))

⇒(a + 6b) ⋮ 7 (ĐPCM)

Vậy...

Xin lỗi anh nhưng câu B) em không hiểu lắm ạ!

 

B) Làm tương tự câu a ta được:

(a+6b); (2a+5b); (3a+4b); (4a+3b); (5a+2b); (6a+b) đều chia hết cho 7 ⇒(a+6b).(2a+5b).(3a+4b).(4a+3b).(5a+2b).(6a+b) chia hết cho 7.7.7.7.7.7 ⇒(a+6b).(2a+5b).(3a+4b).(4a+3b).(5a+2b).(6a+b) chia hết cho 76 (ĐPCM)

Vậy...

A)Ta có: (3a + 4b) ⋮ 7 ⇒ 2 . (3a + 4b) ⋮ 7 ⇒ (6a + 8b) ⋮ 7 (1)

Ta lại có:

(6a + 8b) + (a + 6b)

=(6a + a) + (8b + 6b)

=7a + 14b

=7a + 7 . 2 . b

=7 . (a + 2b) ⋮ 7 (vì 7 ⋮ 7)

⇒(6a + 8b) + (a + 6b) ⋮ 7 mà (6a + 8b) ⋮ 7 (theo (1))

⇒(a + 6b) ⋮ 7 (ĐPCM)

Vậy...

Xin lỗi anh nhưng câu B) em không hiểu lắm ạ!

 

7 tháng 1 2024

Viết lại câu b đi bạn.