trong mặt phẳng tọa độ oxy cho parabol (p) y=3/2x^2 và đường thẳng (d):y=mx+2
a) vẽ đồ thị (p)
b) tìm tất cả các giá trị của m để (d)cắt (p) tại hai điểm phân biệt có hoành độ x1,x2 thỏa mãn x1^2 +x2^2 -x1x2 =40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Phương trình hoành độ giao điểm là:
\(\dfrac{3}{2}x^2-mx-4=0\)
\(\Leftrightarrow3x^2-2mx-8=0\)
ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt
Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=24\)
\(\Leftrightarrow m^2\cdot\dfrac{4}{9}-3\cdot\dfrac{-8}{3}=24\)
\(\Leftrightarrow m^2\cdot\dfrac{4}{9}=16\)
hay m=6 hoặc m=-6
Phương trình hoành độ giao điểm:
`mx-3=x^2`
`<=>x^2-mx+3=0` (1)
(P) cắt (d) tại 2 điểm phân biệt `<=>` PT (1) có 2 nghiệm phân biệt.
`<=> \Delta >0`
`<=>m^2-3>0`
`<=> m<-\sqrt3 \vee m>\sqrt3`
Viet: `{(x_1+x_2=m),(x_1x_2=3):}`
`|x_1-x_2|=2`
`<=>(x_1-x_2)^2=4`
`<=> (x_1+x_2)^2-4x_1x_2=4`
`<=>m^2-4.3=4`
`<=>m= \pm 4` (TM)
Vậy....
Phương trình hoành độ giao điểm là :
\(-x^2=mx+2\)
\(\Leftrightarrow x^2+mx+2=0\)
Lại có : \(\Delta=m^2-8>0\)
Theo định lí Vi - et ta có :
\(\left\{{}\begin{matrix}x1+x2=-m\\x1x2=2\end{matrix}\right.\)
\(\left(x1+1\right)\left(x2+1\right)=0\)
\(\Leftrightarrow x1x2+x1+x1+1=0\)
\(\Leftrightarrow2-m+1=0\Leftrightarrow m=3\)
chúng ta sẽ lại có :
Theo định lí Vi - et ta có :
\(\trái(x1+1\phải)\trái(x2+1\phải)=0\)
Xét phương trình hoành độ giao điểm của (d) và (P):
x 2 = m x + 5 ⇔ x 2 − m x − 5 = 0 .
Ta có tích hệ số a c = − 5 < 0 nên phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt với mọi m hay thẳng (d) cắt parabol (P) tại hai điểm phân biệt với mọi m.
Theo hệ thức Vi-ét ta có x 1 + x 2 = m x 1 x 2 = − 5 Ta có:
x 1 > x 2 ⇔ x 1 2 > x 2 2 ⇔ x 1 2 − x 2 2 > 0 ⇒ x 1 + x 2 x 1 − x 2 > 0
Theo giả thiết: x 1 < x 2 ⇔ x 1 − x 2 < 0 do đó x 1 + x 2 < 0 ⇔ m < 0 .
Vậy thỏa mãn yêu cầu bài toán.
a) pt hoành độ giao điểm: \(x^2-mx-8=0\)
\(ac=1.-8=-8< 0\Rightarrow\) pt luôn có 2 nghiệm phân biệt
b) Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m\left(1\right)\\x_1x_2=\dfrac{c}{a}=-8\left(2\right)\end{matrix}\right.\)
Vì \(x_1x_2=-8< 0\Rightarrow x_1,x_2\) trái dấu
Ta có: \(x_1+\sqrt{x_2}=0\Rightarrow x_1=-\sqrt{x_2}< 0\Rightarrow x_2>0\)
Thế vào (2):\(-x_2\sqrt{x_2}=-8\Rightarrow x_2\sqrt{x_2}=8\Leftrightarrow\left(\sqrt{x_2}\right)^3=8\)
\(\Rightarrow\sqrt{x_2}=2\Rightarrow x_2=4\Rightarrow x_1=-2\Rightarrow x_1+x_2=2=m\)
Lời giải:
a. Để $(d)$ đi qua $A(1;0)$ thì:
$y_A=2x_A-m+3$
$\Leftrightarrow 0=2.1-m+3=5-m$
$\Leftrightarrow m=5$
b.
PT hoành độ giao điểm:
$x^2-(2x-m+3)=0$
$\Leftrightarrow x^2-2x+m-3=0(*)$
Để $(P), (d)$ cắt nhau tại 2 điểm pb thì $(*)$ phải có 2 nghiệm pb $x_1,x_2$
Điều này xảy ra khi:
$\Delta'=1-(m-3)>0\Leftrightarrow 4-m>0\Leftrightarrow m< 4$
Áp dụng định lý Viet: $x_1+x_2=2$ và $x_1x_2=m-3$
Khi đó:
$x_1^2-2x_2+x_1x_2=-12$
$\Leftrightarrow x_1^2-(x_1+x_2)x_2+x_1x_2=-12$
$\Leftrightarrow x_1^2-x_2^2=-12$
$\Leftrightarrow (x_1-x_2)(x_1+x_2)=-12$
$\Leftrightarrow x_1-x_2=-6$
$\Rightarrow x_1=-2; x_2=4$
$m-3=x_1x_2=(-2).4=-8$
$\Leftrightarrow m=-5$ (tm)
Hoành độ giao điểm tm pt
\(x^2-mx+3=0\)
\(\Delta=m^2-4.3=m^2-12\)
Để pt có 2 nghiệm pb khi m^2 - 12 > 0
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=3\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=4\)
Thay vào ta được \(m^2-6-2.3=4\Leftrightarrow m^2-16=0\Leftrightarrow m=4;m=-4\)(tm)
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=mx+5\)
\(x^2-mx-5=0\)
\(\Delta=m^2+20\)
Vì \(\Delta>0\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt
Vậy đường thẳng (d) và (P) luôn cắt nhau tại 2 điểm phân biệt
Câu tìm m bạn ghi rõ đề ra nhá
a,bạn thay m = 2 vào (d), lập hoành độ tự tìm nhé
Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-mx-3=0\)
\(\Delta=m^2-4\left(-3\right)=m^2+12>0\)
Vậy pt luôn có 2 nghiệm pb
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-3\end{matrix}\right.\)
Ta có \(\dfrac{x_1+x_2}{x_1x_2}=\dfrac{3}{2}\)Thay vào ta được
\(\dfrac{m}{-3}=\dfrac{3}{2}\Leftrightarrow m=-\dfrac{9}{2}\)
b: Phương trình hoành độ giao điểm là:
\(\dfrac{3}{2}x^2-mx-2=0\)
\(\Leftrightarrow3x^2-2mx-4=0\)
a=3; b=-2m; c=-4
Vì ac<0 nên phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=40\)
\(\Leftrightarrow m^2\cdot\dfrac{4}{9}-3\cdot\dfrac{-4}{3}=40\)
\(\Leftrightarrow m^2\cdot\dfrac{4}{9}=36\)
=>m=9 hoặc m=-9