K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=2\sqrt{5}-2\sqrt{5}+9\sqrt{5}-30\sqrt{5}=-21\sqrt{5}\)

b: \(=2\sqrt{7}-6\sqrt{7}-\dfrac{3}{4}\sqrt{7}-8\sqrt{7}=-\dfrac{51}{4}\sqrt{7}\)

a: \(=\left(2\sqrt{3}-12\sqrt{3}+15\sqrt{3}\right)\cdot\sqrt{3}=5\sqrt{3}\cdot\sqrt{3}=15\)

b: \(=\left(6\sqrt{2}-16\sqrt{2}+15\sqrt{2}\right):5=\sqrt{2}\)

c: \(=\dfrac{\left(2\sqrt{5}-6\sqrt{5}+15\sqrt{5}\right)}{\sqrt{5}}=17-6=11\)

12 tháng 9 2023

a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=\sqrt{2^2\cdot7}-\sqrt{3^2\cdot7}+\dfrac{\sqrt{7}\cdot\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)

\(=2\sqrt{7}-3\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1\)

\(=-\sqrt{7}\)

\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\cdot\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)

\(=\left[\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)

\(=\dfrac{2\cdot4}{\sqrt{x}-3}\)

\(=\dfrac{8}{\sqrt{x}-3}\)

b) \(A>B\) khi 

\(\dfrac{8}{\sqrt{x}-3}< -\sqrt{7}\)

\(\Leftrightarrow8< -\sqrt{7x}+3\sqrt{7}\)

\(\Leftrightarrow x< \dfrac{\left(3\sqrt{7}-8\right)^2}{7}\)

a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)

\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)

\(=33\sqrt{3}\cdot\sqrt{3}\)

=99

b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)

\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)

\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)

c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)

\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)

\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)

\(=36-36\sqrt{2}+18\sqrt{3}\)

d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)

\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)

\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)

\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)

2 tháng 7 2021

a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)

   \(=28.3+9.3-4.3=99\)

b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)

  \(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)

29 tháng 6 2021

\(a,A=2\sqrt{2}-9\sqrt{2}+16\sqrt{2}-5\sqrt{2}\)

\(=4\sqrt{2}\)

\(b,B=\left|1-\sqrt{5}\right|+\sqrt{5+2\sqrt{5}+1}\)

\(=\left|1-\sqrt{5}\right|+\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=\left|1-\sqrt{5}\right|+\left|\sqrt{5}+1\right|=\sqrt{5}-1+\sqrt{5}+1=2\sqrt{5}\)

\(c,C=\dfrac{2+\sqrt{6}+2-\sqrt{6}}{\left(2+\sqrt{6}\right)\left(2-\sqrt{6}\right)}=\dfrac{4}{4-6}=-2\)
 

AH
Akai Haruma
Giáo viên
29 tháng 6 2021

Lời giải:

a. 

\(A=2\sqrt{2}-3\sqrt{18}+4\sqrt{32}-\sqrt{50}=2\sqrt{2}-9\sqrt{2}+16\sqrt{2}-5\sqrt{2}\)

\(=(2-9+16-5)\sqrt{2}=4\sqrt{2}\)

b.

\(B=\sqrt{(1-\sqrt{5})^2}+\sqrt{(\sqrt{5}+1)^2}=|1-\sqrt{5}|+|\sqrt{5}+1|=\sqrt{5}-1+\sqrt{5}+1=2\sqrt{5}\)

c.

\(C=\frac{2+\sqrt{6}+2-\sqrt{6}}{(2-\sqrt{6})(2+\sqrt{6})}=\frac{4}{2^2-6}=-2\)

4 tháng 9 2023

a) Để tính giá trị của biểu thức P=(x^3+12x−9)^{2005}=(√3+12√−9)^{2005} với x=3√4(√5+1)−3√4(√5−1). Đầu tiên, ta thay x bằng giá trị đã cho vào biểu thức P: P=(3√4(√5+1)−3√4(√5−1))^3+12(3√4(√5+1)−3√4(√5−1))−9)^{2005} Tiếp theo, ta thực hiện các phép tính để đơn giản hóa biểu thức: P=(4(5+1)^{1/2}−4(5−1)^{1/2})^3+12(4(5+1)^{1/2}−4(5−1)^{1/2})−9)^{2005} =(4√6−4√4)^3+12(4√6−4√4)−9)^{2005} =(4√6−8)^3+12(4√6−8)−9)^{2005} =(64√6−192+96√6−96−9)^{2005} =(160√6−297)^{2005} ≈ 1.332 × 10^3975

b) Để tính giá trị của biểu thức Q=x^3+ax+b=√3+√a+√b^2+√a^3+√3+√a−√b^2+√a^3 với x=3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27). Tương tự như trên, ta thay x bằng giá trị đã cho vào biểu thức Q: Q=(3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27))^3+a(3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27))+b Tiếp theo, ta thực hiện các phép tính để đơn giản hóa biểu thức: Q=(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))^3+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b ≈ −b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b

17 tháng 5 2021

`a)A=\sqrt{4+2sqrt3}`

`=\sqrt{3+2sqrt3+1}`

`=sqrt{(sqrt3+1)^2}`

`=sqrt3+1`

`B)1/(2-sqrt3)+1/(2+sqrt3)`

`=(2+sqrt3)/(4-3)+(2-sqrt3)/(4-3)`

`=2+sqrt3+2-sqrt3`

`=4`

`\sqrt{4x-12}+sqrtx{x-3}-1/3sqrt{9x-27}=8`

`đk:x>=3`

`pt<=>2sqrt{x-3}+sqrt{x-3}-sqrt{x-3}=8`

`<=>2sqrt{x-3}=8`

`<=>sqrt{x-3}=4`

`<=>x-3=16`

`<=>x=19`

Vậy `S={19}`

17 tháng 5 2021

`a)A=\sqrt{4+2sqrt3}`

`=\sqrt{3+2sqrt3+1}`

`=sqrt{(sqrt3+1)^2}`

`=sqrt3+1`

`B)1/(2-sqrt3)+1/(2+sqrt3)`

`=(2+sqrt3)/(4-3)+(2-sqrt3)/(4-3)`

`=2+sqrt3+2-sqrt3`

`=4`

`\sqrt{4x-12}+sqrt{x-3}-1/3sqrt{9x-27}=8`

`đk:x>=3`

`pt<=>2sqrt{x-3}+sqrt{x-3}-sqrt{x-3}=8`

`<=>2sqrt{x-3}=8`

`<=>sqrt{x-3}=4`

`<=>x-3=16`

`<=>x=19`

Vậy `S={19}`

22 tháng 8 2023

\(A=\left(4+\sqrt{3}\right)\sqrt{19-8\sqrt{3}}\)

\(A=\left(4+\sqrt{3}\right)\sqrt{4^2-2\cdot4\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(A=\left(4+\sqrt{3}\right)\sqrt{\left(4-\sqrt{3}\right)^2}\)

\(A=\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)\)

\(A=4^2-3\)

\(A=13\)

\(B=\dfrac{3}{4+\sqrt{13}}+\dfrac{\sqrt{52}}{2}-3\)

\(B=\dfrac{3\left(4-\sqrt{13}\right)}{\left(4-\sqrt{13}\right)\left(4+\sqrt{13}\right)}+\dfrac{2\sqrt{13}}{2}-3\)

\(B=\dfrac{3\left(4-\sqrt{13}\right)}{16-13}+\sqrt{13}-3\)

\(B=4-\sqrt{13}+\sqrt{13}-3\)

\(B=4-3\)

\(B=1\)

7 tháng 7 2021

a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=2\sqrt{7}-3\sqrt{7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)

\(=-\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)

\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)

\(=\dfrac{8}{\sqrt{x}-3}\)

b) \(A>B\Rightarrow-\sqrt{7}>\dfrac{8}{\sqrt{x}-3}\Rightarrow\dfrac{8}{\sqrt{x}-3}+\sqrt{7}< 0\)

\(\Rightarrow\dfrac{\sqrt{7x}+8-3\sqrt{7}}{\sqrt{x}-3}< 0\)

Ta có: \(\left\{{}\begin{matrix}8=\sqrt{64}\\3\sqrt{7}=\sqrt{63}\end{matrix}\right.\Rightarrow8-3\sqrt{7}>0\Rightarrow8-3\sqrt{7}+\sqrt{7x}>0\)

\(\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0< x< 9\)

 

a) Ta có: \(-\dfrac{3}{2}\sqrt{9-4\sqrt{5}}+\sqrt{\left(-4\right)^2\cdot\left(1+\sqrt{5}\right)^2}\)

\(=\dfrac{-3}{2}\left(\sqrt{5}-2\right)+4\cdot\left(\sqrt{5}+1\right)\)

\(=\dfrac{-3}{2}\sqrt{5}+3+4\sqrt{5}+4\)

\(=\dfrac{5}{2}\sqrt{5}+7\)

b) Ta có: \(\left(1+\dfrac{1}{\tan^225^0}\right)\cdot\sin^225^0-\tan55^0\cdot\tan35^0\)

\(=\dfrac{\tan^225^0+1}{\tan^225^0}\cdot\sin25^0-1\)

\(=\left(\dfrac{\sin^225^0}{\cos^225^0}+1\right)\cdot\dfrac{\cos^225^0}{\sin^225^0}\cdot\sin25^0-1\)

\(=\dfrac{\sin^225^0+\cos^225^0}{\cos^225^0}\cdot\dfrac{\cos^225^0}{\sin25^0}-1\)

\(=\dfrac{1}{\sin25^0}-1\)

\(=\dfrac{1-\sin25^0}{\sin25^0}\)