Cho tam giác ABC cân tại A, kẻ AH ⊥ BC (M ∈ BC)
a) Chứng minh △AMB = △AMC
b) Trên tia đối của tia MA lấy N sao cho MN = MA, chứng minh BM là tia phân giác của góc ABN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ABNC có
M là trung điểm chung của AN và BC
AB=AC
=>ABNC là hình bình hành
=>BN=AC=AB
=>ΔBAN cân tạiB
Xét \(\Delta AMB\) và \(\Delta NMC\) có :
\(\widehat{AMB}=\widehat{NMC}\) ( đối đỉnh )
AM = NM ( gt )
MB = MC ( M là trung điểm của BC )
\(\Rightarrow\Delta AMB=\Delta NMC\) ( c.g.c )
\(\Rightarrow\widehat{BAM}=\widehat{CNM}\) ( 2 góc tương ứng )
mà 2 góc này ở vị trí so le trong
\(\Rightarrow AB//NC\) (đpcm)
Xét \(\Delta AMCvà\Delta NMBcó\) :
\(\widehat{AMC}=\widehat{NMB}\) ( đối đỉnh )
AM = NM ( gt )
MC = MB ( M là trung điểm của BC )
\(\Rightarrow\Delta AMC=\Delta NMB\) ( c.g.c )
Xét \(\Delta AMBvà\Delta AMCcó\) :
AM chung
MB = MC ( M là trung điểm của BC )
AB = AC (\(\Delta ABC\) cân tại A )
\(\Rightarrow\Delta AMB=\Delta AMC\) ( c.c.c )
mà \(\Delta NMB=\Delta AMC\)
\(\Rightarrow\Delta AMB=\Delta NMB\) ( tính chất bắc cầu )
\(\Rightarrow BA=BN\) ( 2 cạnh tương ứng )
\(\Rightarrow\Delta ABN\) cân tại B ( đpcm )
\(a,\left\{{}\begin{matrix}AM=MD\\BM=MC\\\widehat{AMB}=\widehat{CMD}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABM}=\widehat{DCM}\\ \text{Mà 2 góc này ở vị trí so le trong nên }AB\text{//}CD\\ b,AH\bot BC;DK\bot BC\Rightarrow AH\text{//}DK\\ \left\{{}\begin{matrix}AM=MD\\\widehat{AHM}=\widehat{DKM}=90^0\\\widehat{AMH}=\widehat{KMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AHM=\Delta DKM\left(c.g.c\right)\\ \Rightarrow AH=DK\)
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
https://cunghocvui.com/danh-muc/toan-lop-7 Trong này có lời giải nhée
Xét \(\Delta ABM\)và\(\Delta ECM\)có :
\(M_1=M_2\)(đối đỉnh)
\(BM=CM\)(gt)
\(AM=EM\)(gt)
\(=>\Delta ABM=\Delta ECM\)(c.g.c)
b,Do \(\Delta ABM=\Delta ECM\)(câu a)
\(=>A=E\)
\(=>AB//EC\)(so le trong)
c, Do \(HF\)là tia đối của tia \(HA\)(1)
Mà\(AHB=90^0\)(2)
Từ (1) và (2) => \(FHB=AHB=90^0\)
Xét \(\Delta AHB\)và \(\Delta FHB\)có :
\(AH=FH\)(gt)
\(HB\)(cạnh chung)
\(AHB=FHB\)(c/m trên)
\(=>\Delta AHB=\Delta FHB\)(c.g.c)
\(=>ABH=FBH\)
\(=>ĐPCM\)
P/S: Chưa check lại và chưa ghi dấu nón cho góc =))
a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:
^AHB = ^DHB ( 1v )
HA = HD ( giả thiết )
MH chung
=> \(\Delta\)AHB = \(\Delta\)DHB ( c.g.c)
b) Từ (a) => ^ABH = ^DHB => BH là phân giác ^ABD
Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC
=> BC là phân giác ^ABD
c) NF vuông BC
AH vuông BC
=> NF // AH
=> ^NFM = ^HAM ( So le trong )
Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )
=> \(\Delta\)NFM = \(\Delta\)HAM ( g.c.g)
=> NF = AH ( 2)
Từ ( a) => AH = HD ( 3)
Từ (2) ; (3) => NF = HD
tời ơi:vv AM ⊥ BC
a, Xét Δ AMB và Δ AMC, có :
\(\widehat{AMB}=\widehat{AMC}=90^o\)
AB = AC (Δ ABC cân tại A)
AM là cạnh chung
=> Δ AMB = Δ AMC (c.g.c)
b, Xét Δ AMB và Δ NMB, có :
BM là cạnh chung
MN = MA (gt)
\(\widehat{AMB}=\widehat{NMB}=90^o\)
=> Δ AMB = Δ NMB (c.g.c)
=> AB = NB
Xét Δ ABN, có : AB = NB (cmt)
=> Δ ABN cân tại B
Ta có : MA = MN (gt)
=> M là trung điểm của AN, MB là đường trung trực của AN
Mà Δ ABN cân tại B
=> BM là đường phân giác của Δ ABN
=> BM là tia phân giác của \(\widehat{ABN}\)
đề sai nên sửa lại chút nhá AM ⊥ BC với lại hình thì bạn tự vẽ.
a, Xét Δ AMB và Δ AMC, có :
AB = AC (Δ ABC cân tại A)
\(\widehat{AMB}=\widehat{AMC}\) ( = 90 độ)
AM là cạnh chung
=> Δ AMB = Δ AMC (c.g.c)
b, Xét Δ AMB và Δ NMB, có :
BM là cạnh chung
\(\widehat{AMB}=\widehat{NMB}\) ( = 90 độ)
MN = MA (gt)
=> Δ AMB = Δ NMB (c.g.c)
=> AB = NB
Xét Δ ABN, có : AB = NB (cmt)
=> Δ ABN cân tại B
Ta có : MA = MN (gt)
=> M là trung điểm của AN, MB là đường trung trực của AN
Mà Δ ABN cân tại B
=> BM là đường phân giác của Δ ABN
=> BM là tia phân giác của \(\widehat{ABN}\)