K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đk: `x >= 0`.

`<=> sqrtx + sqrt(x+3) + 2sqrt(x(x+3)) - (3x+9) + 5x = 0`

Đặt `sqrt x = a, sqrt(x+3) = b`

`<=> a + b + 2ab - 3b^2 + 5a^2 = 0`

`<=> (a+b)(5a+1-3b) = 0`

`<=> a = -b` hoặc `5a + 1 = 3b`.

Đến đây bạn biến đổi ẩn rồi tự giải tiếp ha. 

26 tháng 2 2023
12 tháng 3 2019

ai giúp vớ cần gấp

12 tháng 3 2019

ĐK: \(\frac{2}{3}\le x\le\frac{3}{2}\)

(Vế phải và vế trái đều không âm nên có thể bình phương 2 vế theo một phương trình tương đương)

pt <=> \(x^2\left(3x-2\right)+\left(3-2x\right)+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}=x^3+x^2+x+1\)

<=> \(3x^3-2x^2+3-2x+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}-x^3-x^2-x-1=0\)

<=> \(2x^3-3x^2+2-3x+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}=0\)

<=> \(x^2\left(2x-3\right)+\left(2-3x\right)+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}=0\)

<=> \(-x^2\left(3-2x\right)-\left(3x-2\right)+2\sqrt{\left(3x-2\right).x^2\left(3-2x\right)}=0\)

<=> \(x^2\left(3-2x\right)+\left(3x-2\right)-2\sqrt{\left(3x-2\right).x^2\left(3-2x\right)}=0\)

<=> \(\left(\sqrt{x^2\left(3-2x\right)}-\sqrt{3x-2}\right)^2=0\)

<=> \(\sqrt{x^2\left(3-2x\right)}-\sqrt{3x-2}=0\)

<=> \(\sqrt{x^2\left(3-2x\right)}=\sqrt{3x-2}\)

<=> \(x^2\left(3-2x\right)=3x-2\)

<=> \(-2x^3+3x^2-3x+2=0\)

<=> \(\left(x-1\right)\left(-2x^2+x-2\right)=0\)

<=> x=1  (tm) 

12 tháng 3 2019

ĐKXĐ: \(\frac{2}{3}\le x\le\frac{3}{2};x\in R\)

Pt cho tương đương: \(x\sqrt{3x-2}+\sqrt{3-2x}=\sqrt{\left(x+1\right)\left(x^2+1\right)}\)

Đặt \(\sqrt{3x-2}=a;\sqrt{3-2x}=b\left(a,b\ge0\right)\). Khi đó, ta được phương trình:

\(ax+b=\sqrt{\left(a^2+b^2\right)\left(x^2+1\right)}\Leftrightarrow a^2x^2+2abx+b^2=a^2x^2+b^2x^2+a^2+b^2\)

\(\Leftrightarrow2abx-b^2x^2-a^2=0\Leftrightarrow a^2-2abx+b^2x^2=0\)

\(\Leftrightarrow\left(a-bx\right)^2=0\Leftrightarrow a=bx\) hay \(\sqrt{3x-2}=x\sqrt{3-2x}\Leftrightarrow3x-2=3x^2-2x^3\)

\(\Leftrightarrow2x^3-3x^2+3x-2=0\Leftrightarrow2\left(x-1\right)\left(x^2+x+1\right)-3x\left(x-1\right)=9\)

\(\Leftrightarrow\left(x-1\right)\left(2x^2-x+2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\2x^2-x+2=0\left(vn\right)\end{cases}}\)

Vậy PT cho có nghiệm duy nhất x=1.

12 tháng 3 2019

Cái chỗ " 2(x-1)(x2+x+1) - 3x(x-1) = 9" bn sửa 9 thành 0 nhé, tại mik gõ vội :(

24 tháng 9 2016

1, x=5 bình phương các vế lên rồi giải 

5 tháng 4 2021

undefined