co x,y là các số thực duwqowng thỏa mãn:\(\frac{1}{x}+\frac{2}{y}=2.\)chứng minh \(5x^2+y-4xy+y^2\ge3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{x}+\frac{2}{y}=2\ge2\sqrt{\frac{2}{xy}}\Rightarrow\sqrt{\frac{2}{xy}}\le1\Rightarrow xy\ge2\)
\(5x^2+y-4xy+y^2=\left(2x-y\right)^2+x^2+y\)
\(\ge x^2+y=x^2+\frac{y}{2}+\frac{y}{2}\)\(\ge3\sqrt[3]{\frac{\left(xy\right)^2}{4}}\ge3\)(Đpcm0
Dấu = khi x=1;y=2
Áp dụng BĐT Cauchy cho 2 số không âm, ta được:
\(\frac{1}{x}+\frac{2}{y}=2\ge2\sqrt{\frac{2}{xy}}\Leftrightarrow\sqrt{\frac{2}{xy}}\le1\Leftrightarrow xy\ge2\)
\(5x^2+y-4xy+y^2=\left(2x-y\right)^2+x^2+y\ge x^2+y\)
\(=x^2+\frac{y}{2}+\frac{y}{2}\ge3\sqrt[3]{x^2.\frac{y}{2}.\frac{y}{2}}=3\sqrt[3]{\frac{\left(xy\right)^2}{4}}\ge3\sqrt[3]{\frac{4}{4}}=3.1=3\)
có 1/x +2/y = 2/2x +2/2y =2 * ( 1/2x +1 /y ) >= 8/2x+y . suy ra 2x+y >= 4 . có 5x^2 +y-4xy+ý^2 = (2x-y)^2 +x^2 +y >= x^2 +y >= 2x+y -1
(vi x^2 +1 >= 2x suy ra x ^2 >= 2x -1 ) suy ra dpcm
Ta có: \(\frac{1}{x}+\frac{2}{y}=2\ge2\sqrt{\frac{2}{xy}}\Leftrightarrow\sqrt{\frac{2}{xy}}\le1\Leftrightarrow xy\ge2\)
\(5x^2+y-4xy+y^2=\left(2x-y\right)^2+x^2+y\)
\(\ge x^2+y=x^2+\frac{y}{2}+\frac{y}{2}\ge3\sqrt[3]{\frac{\left(xy\right)^2}{4}}\ge3\left(đpcm\right)\)
Dấu "="\(\Leftrightarrow x=1,y=2\)
Nhớ có câu tương tự bài này mà sao nót ko hiển thị nhỉ? Thôi kệ nhai lại vậy:v
\(gt\Leftrightarrow\left(\frac{1}{x}+1\right)\left(\frac{1}{y}+1\right)=4\)
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b\Rightarrow\left(a+1\right)\left(b+1\right)=4\Rightarrow ab+a+b=3\)
Ta có: \(LHS=\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\)
\(=\frac{1}{\sqrt{3\left(\frac{1}{a}\right)^2+1}}+\frac{1}{\sqrt{3\left(\frac{1}{b}\right)^2+1}}\)
\(=\frac{a}{\sqrt{a^2+3}}+\frac{b}{\sqrt{b^2+3}}=\frac{a}{\sqrt{\left(a+1\right)\left(a+b\right)}}+\frac{b}{\sqrt{\left(b+1\right)\left(a+b\right)}}\) (thay cái giả thiết vào:v)
\(\le\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{a+b}{a+b}\right)=\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}\right)+\frac{1}{2}\)
\(=\frac{1}{2}\left(\frac{ab+3}{ab+a+b+1}\right)+\frac{1}{2}=\frac{1}{2}\left(\frac{ab+3}{4}\right)+\frac{1}{2}\) (1)
Từ giả thiết dễ dàng chứng minh \(ab\le1\). Từ đó thay vào (1) ta có đpcm.
Nhớ có câu tương tự bài này mà sao nót ko hiển thị nhỉ? Thôi kệ nhai lại vậy:v
gt\Leftrightarrow\left(\frac{1}{x}+1\right)\left(\frac{1}{y}+1\right)=4gt⇔(x1+1)(y1+1)=4
Đặt \frac{1}{x}=a;\frac{1}{y}=b\Rightarrow\left(a+1\right)\left(b+1\right)=4\Rightarrow ab+a+b=3x1=a;y1=b⇒(a+1)(b+1)=4⇒ab+a+b=3
Ta có: LHS=\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}LHS=3x2+11+3y2+11
=\frac{1}{\sqrt{3\left(\frac{1}{a}\right)^2+1}}+\frac{1}{\sqrt{3\left(\frac{1}{b}\right)^2+1}}=3(a1)2+11+3(b1)2+11
=\frac{a}{\sqrt{a^2+3}}+\frac{b}{\sqrt{b^2+3}}=\frac{a}{\sqrt{\left(a+1\right)\left(a+b\right)}}+\frac{b}{\sqrt{\left(b+1\right)\left(a+b\right)}}=a2+3a+b2+3b=(a+1)(a+b)a+(b+1)(a+b)b (thay cái giả thiết vào:v)
\le\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{a+b}{a+b}\right)=\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}\right)+\frac{1}{2}≤21(a+1a+b+1b+a+ba+b)=21(a+1a+b+1b)+21
=\frac{1}{2}\left(\frac{ab+3}{ab+a+b+1}\right)+\frac{1}{2}=\frac{1}{2}\left(\frac{ab+3}{4}\right)+\frac{1}{2}=21(ab+a+b+1ab+3)+21=21(4ab+3)+21 (1)
Từ giả thiết dễ dàng chứng minh ab\le1ab≤1. Từ đó thay vào (1) ta có đpcm.
\(S=\dfrac{x}{2}+\dfrac{1}{2x}+\dfrac{y}{2}+\dfrac{2}{y}+\dfrac{1}{2}\left(x+y\right)\)
\(S\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{2y}{2y}}+\dfrac{1}{2}.3=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)
Áp dụng BĐT Cauchy và Cauchy - Schwarz ta có:
\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy\cdot\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)
\(=\frac{4}{\left(x+y\right)^2}+2+\frac{5}{1^2}=4+2+5=11\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Ta có:
\(\frac{1}{x}+\frac{2}{y}=2\ge2\sqrt{\frac{2}{xy}}\Rightarrow\sqrt{\frac{2}{xy}}\le1\Rightarrow xy\ge2\)
\(5x^2+y-4xy+y^2=\left(2x-y\right)^2+x^2+y\)
\(\ge x^2+y=x^2+\frac{y}{2}+\frac{y}{2}\ge3\sqrt[3]{\frac{\left(xy\right)^2}{4}}\ge3\)(Đpcm)
Dấu = khi x=1;y=2
nhớ k lầm là t lm bài này r` thì fai