với giá trị nào của m thì phương trình x^2-4x+m-3=0 có 2 nghiệm x1,x2 sao cho x1+x2+x1x2=7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Ta có: Δ = (m - 2 ) 2 - (m - 1)(m - 3) = ( m 2 - 4m + 4 ) - ( m 2 - 4m + 3) = 1 > 0
Phương trình có hai nghiệm phân biệt x1, x2.
Áp dụng hệ thức Vi-ét ta có:
Ta có:
a) Thay x=0 vào phương trình, ta được:
\(4\cdot0^2-2\cdot\left(2m+3\right)\cdot0+m+1=0\)
\(\Leftrightarrow m+1=0\)
hay m=-1
Áp dụng hệ thức Vi-et, ta có:
\(x_1+x_2=\dfrac{2\left(2m+3\right)}{4}\)
\(\Leftrightarrow x_1=\dfrac{2\cdot\left(-2+3\right)}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)
Vậy: Khi m=-1 và nghiệm còn lại là \(x=\dfrac{1}{2}\)
a, Thay m=0 vào pt ta có:
\(x^2-x+1=0\)
\(\Rightarrow\) pt vô nghiệm
b, Để pt có 2 nghiệm thì \(\Delta\ge0\)
\(\Leftrightarrow\left(-1\right)^2-4.1\left(m+1\right)\ge0\\ \Leftrightarrow1-4m-4\ge0\\ \Leftrightarrow-3-4m\ge0\\ \Leftrightarrow4m+3\le0\\ \Leftrightarrow m\le-\dfrac{3}{4}\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1x_2\left(x_1x_2-2\right)=3\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1x_2\right)^2-2x_1x_2=3.1\\ \Leftrightarrow\left(m+1\right)^2-2\left(m+1\right)-3=0\\ \Leftrightarrow\left[{}\begin{matrix}m+1=3\\m+1=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)
Ptr có nghiệm `<=>\Delta' >= 0`
`<=>[-(m+1)]^2-(m^2+4) >= 0`
`<=>m^2+2m+1-m^2-4 >= 0`
`<=>m >= 3/2`
Với `m >= 3/2`, áp dụng Vi-ét có:`{(x_1+x_2=[-b]/a=2m+2),(x_1.x_2=c/a=m^2+4):}`
Ta có:`C=x_1+x_2-x_1.x_2+3`
`<=>C=2m+2-m^2-4+3`
`<=>C=-m^2+2m+1`
`<=>C=-(m^2-2m+1)+2`
`<=>C=-(m-1)^2+2`
Vì `-(m-1)^2 <= 0 AA m >= 3/2`
`<=>-(m-1)^2+2 <= 2 AA m >= 3/2`
Dấu "`=`" xảy ra`<=>(m-1)^2=0<=>m=1` (ko t/m)
Vậy không tồn tại `m` để `C` có `GTLN`
\(\Delta=1-4\left(m+1\right)>0\Rightarrow m< -\dfrac{3}{4}\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1^2+x_1x_2+3x_2=7\)
\(\Leftrightarrow x_1\left(x_1+x_2\right)+3x_2=7\)
\(\Leftrightarrow x_1+3x_2=7\)
Kết hợp Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1+3x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-2\\x_2=3\end{matrix}\right.\)
Thế vào \(x_1x_2=m+1\)
\(\Rightarrow m+1=-6\Rightarrow m=-7\)
Ta có A = x 1 x 2 − 2 ( x 1 + x 2 ) − 6
= m 2 + 2 - 2 2 m + 2 - 6 = m 2 - 4 m - 8
⇒ A = m - 2 2 - 12 ≥ 12
Suy ra m i n A = - 12 ⇔ m = 2
m = 2 thỏa mãn (*)
Vậy với m = 2 thì biểu thức A đạt giá trị nhỏ nhất.
Đáp án cần chọn là: A
Tại mk lười dùng delta nên bn làm delta cũng tương tự vậy nha!
Ta có: x2 - 4x + 5m - 2 = 0
\(\Leftrightarrow\) x2 - 4x + 4 + 5m - 6 = 0
\(\Leftrightarrow\) (x - 2)2 = 6 - 5m
\(\Leftrightarrow\) x - 2 = \(\pm\)\(\sqrt{6-5m}\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x_1=\sqrt{6-5m}+2\\x_2=-\sqrt{6-5m}+2\end{matrix}\right.\)
Ta có: x12 . x2 + x1 . x22 = 12
\(\Leftrightarrow\) (\(\sqrt{6-5m}+2\))2. \(\left(-\sqrt{6-5m}+2\right)\) + \(\left(\sqrt{6-5m}+2\right)\) \(\left(-\sqrt{6-5m}+2\right)^2\) = 12
\(\Leftrightarrow\) (4 - 6 + 5m)(\(\sqrt{6-5m}+2-\sqrt{6-5m}+2\)) = 12
\(\Leftrightarrow\) (-2 + 5m).4 = 12
\(\Leftrightarrow\) -2 + 5m = 3
\(\Leftrightarrow\) m = 1
Vậy ...
Chúc bn học tốt!
\(\Delta'=1-4\left(m+1\right)=-4m-3>0\Rightarrow m< -\dfrac{3}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1^2+x_1x_2=7-3x_2\)
\(\Leftrightarrow x_1\left(x_1+x_2\right)=7-3x_2\)
\(\Leftrightarrow x_1=7-3x_2\)
\(\Leftrightarrow x_1+x_2=7-2x_2\)
\(\Leftrightarrow1=7-2x_2\Rightarrow x_2=3\Rightarrow x_1=1-x_2=-2\)
Thế vào \(x_1x_2=m+1\Rightarrow-6=m+1\Rightarrow m=-7\)
Ptr có nghiệm `<=>\Delta' >= 0`
`<=>(-2)^2-(m-3) >= 0`
`<=>4-m+3 >= 0 <=>m <= 7`
`=>` Áp dụng Vi-ét: `{(x_1+x_2=[-b]/a=4),(x_1.x_2=c/a=m-3):}`
Lại có: `x_1+x_2+x_1.x_2=7`
`<=>4+m-3=7`
`<=>m=6` (t/m `m <= 7`)