K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0
4 tháng 6 2015

chỉnh lại câu 1 tí:

1)
    + Xét tứ giác AEFD :  ADF +AEF = 90 +90 = 180
    Suy ra: Tứ giác AEFD nội tiếp được đường tròn 
    Suy ra:  EAF = EDF hay EAF = EDC
    + Xét tgAEF và tg EDC :  AEF = ECD = 90 VÀ EAF = EDC
    Suy ra: tgAEF ~  tgDCE =>  .AE /AF = CD/DE

2.

Tứ giác AEFD nội tiếp được đường tròn 
=>  EAF = EDF mặt khác  EAF = EDC mặt khác  : EAF + HAG = 90 VÀ EDC + HEG =90
suy ra: HAG = HEG  suy ra tứ giác AEGH nội tiếp được đường tròn =>  HGE = 90 
Vì HGE = HAE = 90 ,suy ra đường tròn này có tâm O là trung điểm của AE.

3.

Đường tròn ngoại tiếp tam giác AHE chính là đường tròn (O).
    + Xét tam giác HGE :   và OH = OE = 1/2. HE => OH = OE = OG.
    + Xét tg OEK và tg OGK : 
OE = OG ; OK chung ;EK = GK( Vì K thuộc đường trung trực của đoạn thẳng EG)
Suy ra  tgOEK =tg OGK (c – c – c) =>  KGO = KEO = 90 độ
Suy ra: KG vuông góc với OG, vậy KG là tiếp tuyến của đường tròn ngoại tiếp tam giác HAE.(đpcm).

b: Xét ΔABE vuông tại E và ΔADF vuông tại F có

AB=AD

góc ABE=góc ADF

=>ΔABE=ΔADF

=>EB=DF

CE+EB=CB

CF+FD=CD

mà EB=FD và CB=CD

nên CE=CF

Xét ΔCBD có CE/CB=CF/CD

nên EF//BD

mà EF=1/2BD

nên EFlà đường trung bình của ΔBCD

=>E là trung điểm của BC, F là trung điểm của CD

Xét ΔABC có

AE vừa là đường cao, vừa là trung tuyến

=>ΔABC cân tại A

=>AB=AC

mà AB=BC

nên ΔABC đều

=>góc ABC=60 độ

=>góc ADC=60 độ

góc BAD=góc BCD=180-60=120 độ

25 tháng 8 2019

         A B C D O

Xét tam giác ABC và BAD có :

AB : chung 

\(\widehat{BAD}=\widehat{ABC}\)

AD = BC    

( ABCD là hình thang cân ) 

\(\Rightarrow\Delta ABC=\Delta BAD\)

\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)

\(\Delta AOB\)CÓ : \(\widehat{OAB}=\widehat{OBA}\Rightarrow\Delta AOB\)cân tại O nên OA = OB

15 tháng 3 2020

ABCDFGEKI

a,  có : ^FAD + ^DAE = 90

^BAE + ^DAE = 90

=> ^FAD = ^BAE 

xét tam giác FDA và tam giác EBA có : AB = AD do ABCD là hình vuông (gt)

^FDA = ^EBA = 90

=> tam giác FDA = tam giác EBA (cgv-gnk)

=> AF = AB (Đn)

=> tam giác AFB cân tại A (đn)

có AI là trung tuyến

=> AI _|_ EF                (1)

xét tam giác GIE và tam giác KIF có : ^GIE = ^KIF (đối đỉnh)

FI = IE do I là trung điểm của EF (gt)

EG // FK (gT) => ^GEI = ^IFK (slt)

=> tam giác GIE = tam giác KIF (g-c-g)

=> EG = FK (đn)

mà EG // FK (gt)

=> EGFK là hình bình hành (dh) và (1)

=> EGFK là hình thoi (dh)

b, kẻ AC

AC là pg của ^BAC do ABCD là hình vuông (gt) => ^DAK + ^KAC = 45     

tam giác  AFE vuông cân (tự cm) => ^IAE = 45 => ^KAC + ^CAE = 45

=> ^DAK = ^CAE 

tam giác ADK vuông tại D => ^AKD = 90 - ^DAK (đl)

^FAC = 90 - ^CAE

=> ^AKD = ^FAC

Xét tam giác AFK và tam giác AFC có : ^AFC chung

=> tam giác AFK đồng dạng với tam giác AFC (g-g)

=> AF/FC = FK/AF

=> AF^2 = KF.KC

c, có BD và AC là đường chéo của hình vuông ABCD 

=> B;D thuộc đường trung trực của AC (2)

xét tam giác AFE vuông tại A có I là trung điểm của EF (gt) => AI = EF/2 (đl)

xét tam giác FEC vuông tại C có I là trung điểm của EF (gt) => CI = EF/2

=> AI = IC 

=> I thuộc đường trung trực của AC và (2)

=> B;I;D thẳng hàng 

d, Có EK = FK do EGFK là hình thoi (câu a)

FK = FD + DK

FD = BE do tam giác ABE = tam giác ADF (Câu a)

=> EK = BE + DK

có chu vi ECK = EC + KC + EK

=> chu vi ECK = EC + KC + BE + DK

= BC + DC

= 2BC 

mà BC = 6

=> Chu vi ECK = 12