Giải bất phương trình
\(\dfrac{x^2+2x+2}{x+1}\ge\dfrac{x^2+4x+5}{x+1}-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>5(2-x)<3(3-2x)
=>10-5x<9-6x
=>x<-1
b: =>2/9x+5/3>=1/5x-1/5+1/3x
=>2/9x+5/3>=8/15x-1/5
=>-14/45x>=-28/15
=>x<=6
\(Giải:\)
\(ĐK:x\ne\left(-2\right);x\ne\left(-1\right)\)
\(\frac{x^2+2x+2}{x+1}>\frac{x^2+4x+5}{x+2}-1\Leftrightarrow\frac{x^2+2x+2}{x+1}>\frac{x^2+3x+3}{x+2}\)
\(\Leftrightarrow\frac{x^2+2x+1}{x+1}+\frac{1}{x+1}-\frac{x^2+3x+2+1}{x+2}>0\)
\(\Leftrightarrow\frac{\left(x+1\right)^2}{x+1}-\frac{\left(x+1\right)\left(x+2\right)}{x+2}+\frac{1}{x+1}-\frac{1}{x+2}>0\)
\(\Leftrightarrow x+1-x-1+\frac{1}{x+1}-\frac{1}{x+2}>0\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}>0\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}=\frac{1}{\left(x+1\right)\left(x+2\right)}>0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}hoặc\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\)
\(+,\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}\Rightarrow x>\left(-2\right)\)
\(+,\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\Rightarrow x< \left(-2\right)\)
BPT đã được giải quyết
a) \(\left(x+1\right)\left(x-1\right)\left(3x-6\right)>0\)
Lập bảng xét dấu ta được kết quả :
\(Bpt\Leftrightarrow\left[{}\begin{matrix}-1< x< 1\\x>2\end{matrix}\right.\)
b) \(\dfrac{x+3}{x-2}\le0\)
Lập bảng xét dấu ta được kết quả :
\(Bpt\Leftrightarrow-3\le x< 2\)
d) \(\dfrac{2x-5}{3x+2}< \dfrac{3x+2}{2x-5}\)
\(\Leftrightarrow\dfrac{2x-5}{3x+2}-\dfrac{3x+2}{2x-5}< 0\)
\(\Leftrightarrow\dfrac{\left(2x-5\right)^2-\left(3x+2\right)^2}{\left(3x+2\right)\left(2x-5\right)}< 0\)
\(\Leftrightarrow\dfrac{\left(2x-5+3x+2\right)\left(2x-5-3x-2\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)
\(\Leftrightarrow\dfrac{-\left(5x-3\right)\left(x+7\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)
Lập bảng xét dấu ta được kết quả :
\(Bpt\Leftrightarrow\left[{}\begin{matrix}-7< x< -\dfrac{2}{3}\\\dfrac{5}{3}< x< \dfrac{5}{2}\end{matrix}\right.\)
a) Ta có: \(2\left(3x+1\right)-4\left(5-2x\right)>2\left(4x-3\right)-6\)
\(\Leftrightarrow6x+2-20+8x>8x-6-6\)
\(\Leftrightarrow14x-18-8x+12>0\)
\(\Leftrightarrow6x-6>0\)
\(\Leftrightarrow6x>6\)
hay x>1
Vậy: S={x|x>1}
b) Ta có: \(9x^2-3\left(10x-1\right)< \left(3x-5\right)^2-21\)
\(\Leftrightarrow9x^2-30x+3< 9x^2-30x+25-21\)
\(\Leftrightarrow9x^2-30x+3-9x^2+30x-4< 0\)
\(\Leftrightarrow-1< 0\)(luôn đúng)
Vậy: S={x|\(x\in R\)}
a, \(\dfrac{\left(2x-5\right)\left(x+2\right)}{4x-3}< 0\)
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}\left(2x-5\right)\left(x+2\right)< 0\\4x-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}\left(2x-5\right)\left(x+2\right)>0\\4x-3< 0\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-2< x< \dfrac{5}{2}\\x>\dfrac{3}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}\left[{}\begin{matrix}x< -2\\x>\dfrac{5}{2}\end{matrix}\right.\\x< \dfrac{3}{4}\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\dfrac{3}{4}< x< \dfrac{5}{2}\\x< -2\end{matrix}\right.\)
Vậy tập nghiệm của bất phương trình là
S = \(\left(\dfrac{3}{4};\dfrac{5}{2}\right)\cup\left(-\infty;-2\right)\)
b, Pt
⇔ \(\left\{{}\begin{matrix}x^2-5x+6=x^2+6x+5\\x\in R\backslash\left\{-1;2\right\}\end{matrix}\right.\)
⇔ x = \(\dfrac{1}{11}\)
Vậy S = \(\left\{\dfrac{1}{11}\right\}\)
ĐKXĐ : x khác -1
\(\dfrac{x^2+2x+2}{x+1}\ge\dfrac{x^2+3x+4}{x+1}\\ \Leftrightarrow\dfrac{x^2+2x+2}{x+1}\ge\dfrac{x^2+2x+2}{x+1}+\dfrac{x+2}{x+1}\\ \Leftrightarrow\dfrac{x+2}{x+1}\le0\\ \Leftrightarrow x+2\ge0;x+1< 0\Leftrightarrow-1>x\ge-2\)