Cho tam giác ABC vuông tại A Trên cạnh BC lấy điểm E sao cho BE=BA qua E kẻ đường vuông góc với BC cắt cạnh AC tại D trên tia đối của tia AB lấy điểm F sao cho AF=EC c/m a) BD là tia phân giác của góc B b)BD là đường trung trực của AE c) 3 điểm EDF thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
-Câu 1,2 của bài này na ná với nhau á, bạn tham khảo:
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-tren-canh-bc-lay-d-d-khong-trung-b-va-bdbc2-tren-tia-doi-cua-tia-cb-lay-e-sao-cho-bdce-cac-duong-vuong-goc-voi-bc-ke-tu-d-va-e-cat-duong-thang-ab-va-ac-lan-luot-tai.4784314158042
c. -Kẻ tia phân giác của \(\widehat{BAC}\) cắt đường vuông góc với MN (tại I) tại F.
-Xét △ABF và △ACF:
\(AB=AC\) (△ABC cân tại A).
\(\widehat{BAF}=\widehat{CAF}\) (AF là tia phân giác của \(\widehat{BAC}\))
AF là cạnh chung.
\(\Rightarrow\)△ABF=△ACF (c-g-c).
\(\Rightarrow BF=CF\) (2 cạnh tương ứng).
\(\widehat{ABF}=\widehat{ACF}\) (2 góc tương ứng).
-Xét △MIF và △NIF:
\(MI=IN\left(cmt\right)\)
\(\widehat{MIF}=\widehat{NIF}=90^0\)
IF là cạnh chung.
\(\Rightarrow\)△MIF=△NIF (c-g-c).
\(\Rightarrow MF=NF\) (2 cạnh tương ứng).
-Xét △BMF và △CNF:
\(BM=NC\)(△MBD=△NCE)
\(MF=NF\left(cmt\right)\)
\(BF=CF\left(cmt\right)\)
\(\Rightarrow\)△BMF=△CNF (c-c-c).
\(\Rightarrow\widehat{MBF}=\widehat{NCF}\) (2 cạnh tương ứng).
Mà \(\widehat{MBF}=\widehat{MCF}\)(cmt)
\(\Rightarrow\widehat{NCF}=\widehat{MCF}\)
Mà \(\widehat{NCF}+\widehat{MCF}=180^0\) (kề bù)
\(\Rightarrow\widehat{NCF}=\widehat{MCF}=\dfrac{180^0}{2}=90^0\)
\(\Rightarrow\)AB⊥BF tại B.
\(\Rightarrow\) F là giao của đường vuông góc với AB tại B và tia phân giác của góc \(\widehat{BAC}\).
\(\Rightarrow\)F cố định.
-Vậy đường thẳng vuông góc với MN luôn đi qua điểm cố định khi D thay đổi trên đoạn BC.
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=90 độ
=>DE vuông góc CB
c: BA=BE
DA=DE
=>BD là trung trực của AE
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>F,D,E thẳng hàng
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do dó: ΔBAD=ΔBED
=>DA=DE
b: Sửa đề: BD vuông góc với AE
Ta có: BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
BA=BE
=>ΔBAD=ΔBED
=>góc ABD=góc EBD
=>BD là phân giác của góc ABE
b: BA=BE
DA=DE
=>BD là trung trực của AE