Một xe vận tải dự định đi từ A đến B với vận tốc 40 km/h. Nhưng đi được 18 phút với vận tốc đó thì xe tăng vận tốc thêm 10 km/h trên đoạn đường còn lại. Vì vậy xe đến nơi sớm 24 phút. Tìm độ dài đoạn đường AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài AB là x
Thời gian dự kiến là x/40
Theo đề, ta có: 3/10+(x-18)/50+2/5=x/40
=>7/10+1/50x-9/25-1/40x=0
=>x*(-1/200)=-17/50
=>x=68
Vì thời gian thực tế đi chậm hơn thời gian dự định là 18 phút nên ta có phương trình:
Vậy chiều dài quãng đường AB là 80km.
Gọi vận tốc dự định là xx(km/h)
Khi đó, thời gian dự định là 260/x (h)
Thời gian thực tế là 120/x+140/x+10 (h)
Do xe đến B sớm hơn dự định 20′ =1/3(h) nên ta có
120/x+140/x+10= 260/x− 1/3
<−>140/x+10=140/x−1/3
<−>140/x=140(x+10)−1/3 x (x+10)
<−>0=4200−x(x+10)
<−>x^2+10x−4200=0
<−>(x−60)(x+70)=0
Vậy x=60 hoặc x=−70 (loại)
Vậy vận tốc dự định của ô tô là 60(km/h).
Bài 1:
Đổi 50 phút thành $\frac{5}{6}$ giờ.
Thời gian xe tải đi từ A đến B: $t_1=\frac{AB}{v_{tải}}=\frac{AB}{40}$ (h)
Thời gian xe con đi từ A đến B: $t_2=2+\frac{AB-2.50}{50+10}=2+\frac{AB-100}{60}$ (h)
$t_1-t_2=\frac{AB}{40}-(2+\frac{AB-100}{60})$
$\Leftrightarrow \frac{5}{6}=\frac{AB}{40}-2-\frac{AB-100}{60}$
$\Rightarrow AB= 140$ (km)
Bài 2:
Đổi 5 giờ 30 phút thành $5,5$ giờ.
Thời gian đi từ A-B là: $\frac{AB}{30}$ (h)
Thời gian làm việc: $1$ (h)
Thời gian đi từ B-A là: $\frac{AB}{24}$ (h)
Tổng thời gian hao phí:
$\frac{AB}{30}+1+\frac{AB}{24}=5,5$
$\Rightarrow AB=60$ (km)
gọi vận tốc dự định đi hết quãng đg AB là x (km/h) , x >0.
suy ra tg dự định đi hết quãng đg AB là 100/x ( h)
1/3 quãng đg đầu xe đi hết : 100x/3 (h)
2/3 quãng đg sau xe đi với vận tốc (x + 10) km/h hết 200(x+10)/3 (h)
theo bài ra ta có pt :
\(\frac{100}{x}-\frac{1}{6}=\frac{100}{3x}+0,5+\frac{200}{3\left(x+10\right)}\)
gpt ta tìm x
Gọi quãng đường AB= s
thời gian xe con đi hết quãng đường AB t1= s/v1 +2/3 = s/60+2/3
thời gian xe tải đi hết quãng đường AB t2= s/(2v2) +s/2(v2+10) = s/80 +s/100
t2= t1+1/2 ---> s/80+ s/100 = s/60 +2/3 +1/2.
Giải phương trình trên ta được s= 200 km
Một tàu thủy chạy trên khúc sông dài 80km, cả đi cả về mất 8 giờ 20 phút. Tính vận tốc của tàu khi nước yên lặng, biết rằng vận tốc của dòng nước là 4 km/h.
Gọi vận tốc dực định là x (km/giờ)
Thời gian định đi là: 120/x (giờ)
Thời gian đi 1/3 quãng đường đầu là: 40/x (giờ)
Vận tốc quãng đường còn lại là: x + 10 (km/giờ)
Thời gian còn lại là: 80/x + 10 (giờ)
Theo đề bài, ta có:
\(\frac{40}{x}+\frac{80}{x+10}-\frac{120}{x}=-\frac{24}{60}\)
\(\Leftrightarrow\orbr{\begin{cases}x=40\\x=-50\end{cases}}\)
Vận tốc dự định của người đó là 40 (km/giờ)
Thời gian lăn bánh là:
\(\frac{40}{40}+\frac{80}{50}=2,6\)(giờ)
Gọi độ dài đoạn đường AB là \(x\left(x>0\right)\)
\(\Rightarrow\) Thời gian dự định là \(\dfrac{x}{40}\) giờ
Xe đi trong \(18\) phút \(=\dfrac{3}{10}\) giờ thì đoạn đường đã đi được là:
\(40\times\dfrac{3}{10}=12km\)
\(\Rightarrow\) Đoạn đường còn lại là \(x-12\) km
Thời gian đi đoạn đường còn lại là:
\(\dfrac{x-12}{40+10}=\dfrac{x-12}{50}\) giờ
Tổng thời gian thực tế đi là:
\(\dfrac{3}{10}+\dfrac{x-12}{50}\) giờ
Do đến sớm hơn \(24\) phút \(=\dfrac{2}{5}\) giờ nên ta có phương trình sau:
\(\dfrac{x}{40}-\left(\dfrac{3}{10}+\dfrac{x-12}{50}\right)=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{x}{40}-\dfrac{3}{10}-\dfrac{x}{50}+\dfrac{12}{50}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{x}{40}-\dfrac{x}{50}=\dfrac{2}{5}+\dfrac{3}{10}-\dfrac{12}{50}\)
\(\Leftrightarrow\dfrac{x}{90}=\dfrac{23}{50}\)
\(\Leftrightarrow x=\dfrac{23}{50}\times90=\dfrac{207}{5}km\)