chứng minh rằng 6^11+6^10+6^9 chia hết cho 43
giải giúp tôi với nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B1\)
\(\frac{3}{4}^{-2}=\frac{16}{9}\)
B 3
\(A=2^{13}\times3^{19}\)
7^6+7^5-7^4=7^4*(7^2+7-2)=7^4*55=7^4*5*11 chia hết cho 11
10^9+10^8+10^7=10^7*(10^2+10+1)=10^7*111=10^6*5*222 chi hết cho 222
ta có76+75+74=74x(72+7-1)
=74x55
do 55 chia hết cho 11 nên 74x55 chia hết cho 11
vậy76+75-74 chia hết cho 11
A=5+52+53+....+59+510
=> A=(5+52)+(53+54)+...+(59+510)
=> A=5(1+5)+53(1+5)+....+59(1+5)
=> A=5.6+53.6+....+59.6
=> A=6(5+53+....+59)
=> A chia hết cho 6 (đpcm)
A=5+52+53+....+59+510
=> A=(5+52)+(53+54)+...+(59+510)
=> A=5(1+5)+53(1+5)+....+59(1+5)
=> A=5.6+53.6+....+59.6
=> A=6(5+53+....+59)
=> A chia hết cho 6 (đpcm)
76+75-74=74.(72+7-1)=74.55=74.5.11
=>76+75-74 chia hết cho 11
câu còn lại tương tự
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
116 - 115 + 114
= 114 . 112 - 114 . 11 + 114 . 1
= 114 . 121 - 114 . 11 + 114 . 1
= 114 . ( 121 - 11 + 1 )
= 114 . 111
Ta thấy : 111 \(⋮\)111
\(\Rightarrow\)114 . 111 \(⋮\)111 hay 116 - 115 + 114 \(⋮\)111
Ta có : \(6^9+6^{10}+6^{11}=6^9\left(1+6+6^2\right)=6^9.43\)chia hết cho 43
Vậy : \(6^9+6^{10}+6^{11}\)chia hết cho 43 (đpcm)