tìm số tự nhiên n biết
1+3+5+...+(2n-1)=1225
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng bên vế trái là tổng dãy số cách đều 2 đơn vị.
Đặt S = 1 + 3 + ... + (2n-1), ta viết lại S theo thứ tự ngược lại ta có:
S = (2n -1) + (2n-3) + ...+ 2 + 1
Cộng các vế với nhau ta có:
2S = [1 + (2n-1)] + [2 + (2n-2)] + ... + [(2n-1) + 1]
= 2n + 2n + ,,, (có [(2n-1) - 1]:2 + 1 = n số hạng)
= 2n, n
=> S = n2
Vậy n2 = 1225
=> n = 35
Đặt \(A=1+3+...+2n-1\)
Tổng A có số số hạng là:
\(\frac{\left[\left(2n-1\right)-1\right]}{2}+1=\frac{2n-1-1}{2}+\frac{2}{2}=\frac{2n-2+2}{2}=\frac{2n}{n}=n\)(số)
Tổng A theo n là:
\(\frac{\left(2n+1+1\right)\cdot n}{2}=\frac{\left(2n+2\right)\cdot n}{2}=\frac{2n\left(n+1\right)}{2}=n\left(n+1\right)\)
Thay A vào ta có:
\(n\left(n+1\right)=1225\)
.... ?Đề sai?.....
Có số số hạng là :
( 2n -1 - 1): 2 + 1 = ( 2n- n ) : 2 + 1 = 2.( n-1 ) :2 + 1 = n-1+1= n ( số hạng )
Tổng trên là :
( 2n -1 + 1 ) .n : 2 = ( 2n . n ) : 2 = n2
\(\Rightarrow\) n2 = 1225
n2 = 352
\(\Rightarrow\) n = 35
3a)
1+2+3+4+5+...+n=231
=> (1+n).n:2=231
(1+n).n=231.2
(1+n).n=462
(1+n).n=2.3.7.11
(1+n).n=(2.11).(3.7)
(1+n).n=22.21
=>n=21
gọi d là ước chung của n+3 và 2n+1 . Ta có (2n+6)chia hết cho d và 2n+5 chia hết cho d suy ra (2n+6)-(2n+5)chia hết cho d suy ra 1chia hết cho d vậy d=1 nhớ kết bạn với mình nhé
1)2n+5-2n-1
=>4 chia hết cho 2n-1
ước của 4 là 1 2 4
2n-1=1=>n=.....
tiếp với 2 và 4 nhé
Bài 1 :
Gọi số đó là a (a \(\in\) N)
Ta có :
a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7
\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103
Bài 1 :
Gọi số đó là a (a ∈ N)
Ta có :
a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7
⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
⇒a + 2 = 105
\(1.1+3+5+.....+\left(2n-1\right)=1225.\)
\(\Leftrightarrow\left\{\left[\left(2n-1\right)+1\right].\left[\left(2n-1\right)-1\right]:2+1\right\}=1225\)
\(\Leftrightarrow\left(2n.2n\right):4=1225\)
\(\Rightarrow n^2=1225\)
\(\Rightarrow n^2=35^2\)
\(\Rightarrow n=35\)
thanks bn kudo heng