Tìm số đo các góc của một tam giác ABC, biết các góc đó lần lượt tỉ lệ vời các số 2,3,5
Mong các bạn giúp đỡ ! Nếu có thể hãy giải thích cho mình làm mẫu nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi a,b,c lfn lượt là số đo các góc tỉ lệ với 3;5;7.
=>\(\frac{a}{3}\)=\(\frac{b}{5}\)=\(\frac{c}{7}\)
Theo dãy tỉ số bằng nhau ta có: \(\frac{a}{3}\)=\(\frac{b}{5}\)=\(\frac{c}{7}\)=\(\frac{a+b+c}{3+5+7}\)=\(\frac{180}{15}\)=12
=> \(\frac{a}{3}\)=12 => a=36
\(\frac{b}{5}\)=12 =>b=60
\(\frac{c}{7}\)=12 =>c=84
Vậy số đo các góc của tam giác là: 36 độ,60 độ,84 độ
**k nha!!
Diện tích hình tứ giác MNPQ là : 16 - ( 2*4)=8(cm2)
k tớ đi rồi tớ giải cả bài cho
Gọi ba góc của một tam giác lần lượt là x , y , z lần lượt tỉ lệ với 1 ; 2 ; 3
Theo đề bài ta có : \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) và x + y + z = 180 ( vì tổng 3 góc trong một tam giác là 180 )
Theo t/c của DTSBN ta có : \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{x+y+z}{1+2+3}=\frac{180}{6}=30\)
\(\frac{x}{1}=30\Rightarrow x=30.1=30\)
\(\frac{y}{2}=30\Rightarrow y=30.2=60\)
\(\frac{z}{3}=30\Rightarrow z=30.3=90\)
mình ghi rõ lời giải và cách làm k nah
theo bài ra ta có góc A=180/10*3=54độ góc B=180/10*5 =90 độ góc C=180-90-54=36 độ suy ra tam giác ABC cân tại B
VÌ MB và NB LÀ tiếp tuyến suy ra tam giác BMN là tam giác cân suy ra góc BNM=BMN=180-GOCSB=[180-90]/2=45 độ
tương tự đối với tam giác CNP có gócPNC=NPC=180-gócC=[180-36]/2=72 độ
do đó góc MNP=180-MNB-PNC=180-45-72=63 độ
Gọi số cần tìm là ab7 ( a,b là chữ số; a khác 0 )
Nếu chuyển chữ số 7 tận cùng của số đó lên đầu ta được 7ab
Theo bài ra ta có:
ab7 x 2 + 21 = 7ab
( ab x 10 + 7 ) x 2 + 21 = 700 + ab
ab x 10 x 2 + 7 x 2 + 21 = 700 + ab
ab x 20 + 14 + 21 = 700 + ab
ab x 19 = 700 - 21 - 14
ab x 19 = 665
ab = 665 : 19
ab = 35
Vậy số cần tìm là 357
Gọi số cần tìm là ab7 theo đề bài ta có
2xab7 + 21 = 7ab => 20xab + 14 + 21 = 700 + ab => 19xab = 665 => ab = 665:19 = 35
=> số cần tìm là 357
Gọi số đo của các góc A, B, C lần lượt là a;b;c (a;b;c > 0)
Vỉ các góc đó lần lượt tỉ lệ với các số 2;3;5 nên
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và a + b + c = 180o
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{180^o}{10}=18^o\)
\(\Rightarrow\hept{\begin{cases}a=18^o.2=36^o\\b=18^o.3=54^o\\c=18^o.5=90^o\end{cases}}\)
Vậy góc A = 36o; góc B = 54o; góc C = 90o