K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2016

A=1+3+32+33+...+32015
=> 3A=3+32+33+...+32016
=> 3A-A=2A=(3+32+33+...+32016)-(1+3+32+33+...+32015)
                   =32016-1
=>2A+1=32016=(31013)2 là số chính phương.

13 tháng 10 2016

cảm ơn bạn nhiều

27 tháng 7 2023

A = 3 + 32 + 33 +...+ 32015

A =  (3 + 32 + 33 + 34 + 35) +...+ (32011 + 32012 + 32013 + 32014 + 32015)

A = 3.( 1 + 3 + 32 + 33 + 34) +...+ 32011( 1 + 3 + 32 + 33 + 34 )

A = 3.211 +...+ 32011.121

A = 121.( 3 +...+ 32021)

121 ⋮ 121 ⇒ A =  121 .( 3 +...+32021)  ⋮ 121 (đpcm)

b, A              = 3 + 32 + 33 + 34 +...+ 32015

   3A             =       32 + 33 + 34 +...+ 32015 + 32016

3A - A           =   32016 - 3

    2A            = 32016 - 3

      2A    + 3  = 32016 -  3 + 3

      2A    + 3 =  32016 = 27n

       27n = 32016

       (33)n = 32016

        33n = 32016 

           3n =  2016

             n = 2016 : 3

             n = 672

c, A = 3 + 32 + ...+ 32015

    A = 3.( 1 + 3 +...+ 32014)

    3 ⋮ 3 ⇒ A = 3.(1 + 3 + 32 +...+ 32014) ⋮ 3

   Mặt khác ta có: A = 3 + 32 +...+ 32015 

                             A =  3 + (32 +...+ 32015)

                             A = 3 + 32.( 1 +...+ 32015)

                             A = 3 + 9.(1 +...+ 32015)

                              9 ⋮ 9 ⇒ 9.(1 +...+ 32015) ⋮ 9 

                                            3 không chia hết cho 9 nên 

                                A không chia hết cho 9, mà A lại chia hết cho 3 

                        Vậy A không phải là số chính phương vì số chính phương chia hết cho số nguyên tố thì sẽ chia hết cho bình phương số nguyên tố đó. nhưng A ⋮ 3 mà không chia hết cho 9

    

 

 

      

26 tháng 12 2022

a) A=3+32+33+34+35+36+....+328+329+330A=3+32+33+34+35+36+....+328+329+330

A=(3+32+33)+(34+35+36)+....+(328+329+330)⇔A=(3+32+33)+(34+35+36)+....+(328+329+330)

A=3(1+3+32)+34(1+3+32)+....+328(1+3+32)⇔A=3(1+3+32)+34(1+3+32)+....+328(1+3+32)

A=3.13+34.13+....+328.13⇔A=3.13+34.13+....+328.13

A=13(3+34+....+328)13(dpcm)⇔A=13(3+34+....+328)⋮13(dpcm)

b) A=3+32+33+34+35+36+....+325+326+327+328+329+330A=3+32+33+34+35+36+....+325+326+327+328+329+330

A=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)⇔A=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)

A=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)⇔A=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)

A=3.364+....+325.364⇔A=3.364+....+325.364

A=364(3+35+310+....+325)⇔A=364(3+35+310+....+325)

A=52.7(3+35+310+....+325)52(dpcm)

 

 

14 tháng 6 2021

giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp 

nên 2b+c-2c-a = 2b-a-c chia hết cho 3

lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3

tương tự ta có c-a và a-b chia hết cho 3

cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81

23 tháng 12 2023

\(9A=3^2-3^4+3^6-3^8+...+3^{78}-3^{80}\)

\(10A=9A+A=1-3^{80}\)

\(\Rightarrow1-10A=3^{80}=\left(3^{40}\right)^2\) là số chính phương

24 tháng 12 2023

làm đề cầu giấy à

 

5 tháng 7 2023

\(A=3+3^2+3^3+...+3^{2015}\)

\(\Rightarrow3A=3^2+3^3+...+3^{2015}+3^{2016}\)

\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{2016}\right)-\left(3+3^2+3^3+...+3^{2015}\right)\)

\(\Rightarrow2A=\left(3^2-3^2\right)+\left(3^3-3^3\right)+...+\left(3^{2016}-3\right)\)

\(\Rightarrow2A=3^{2016}-3\)

\(\Rightarrow A=\dfrac{3^{2016}-3}{2}\)

Ta có: \(2A+3=3^n\)

\(\Rightarrow2\cdot\dfrac{3^{2016}-3}{2}+3=3^n\)

\(\Rightarrow3^{2016}-3+3=3^n\)

\(\Rightarrow3^{2016}=3^n\)

\(\Rightarrow n=2016\)