Tìm 2 số dương biết tổng, hiệu, tích của chúng tỉ lệ với 7;1;24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x , y là hai số dương cần tìm
Theo đề bài , ta có : \(\frac{x+y}{7}=\frac{x-y}{1}=\frac{xy}{24}=\frac{x=y+x-y}{7+1}=\frac{2x}{8}=\frac{x}{4}\)
=> 4xy=24x => y=6 và x=8
2.Gọi hai số dương lần lượt là x và y
Theo đề bài ta có : \(\frac{x+y}{\frac{1}{35}}=\frac{x-y}{\frac{1}{210}}=\frac{xy}{\frac{1}{12}}\)
hay \(35\left(x+y\right)=210\left(x-y\right)=12\left(x\cdot y\right)\)
Mà \(BCNN\left(35,210,12\right)=420\)
=> \(\frac{35\left(x+y\right)}{420}=\frac{210\left(x-y\right)}{420}=\frac{12\left(x\cdot y\right)}{420}\)
=> \(\frac{x+y}{12}=\frac{x-y}{2}=\frac{x\cdot y}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
+)\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)-\left(x-y\right)}{12-2}=\frac{2y}{10}=\frac{y}{5}\)(1)
+) \(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)+\left(x-y\right)}{12+2}=\frac{2x}{14}=\frac{x}{7}\)(2)
=> Từ (1) và (2) => \(\frac{x}{7}=\frac{y}{5}\)
Đặt \(\frac{x}{7}=\frac{y}{5}=k\Rightarrow\orbr{\begin{cases}x=7k\\y=5k\end{cases}}\)
=> \(xy=7k\cdot5k=35k^2\)
=> \(35k^2=35\)
=> \(k^2=1\)
=> k = 1(loại âm vì đề bài cho 2 số dương)
Do đó : \(\frac{x}{7}=1\Rightarrow x=7\)
\(\frac{y}{5}=1\)=> \(y=5\)
Vậy x = 7,y = 5
1. Câu hỏi của I will shine on the sky - Toán lớp 7 - Học toán với OnlineMath
theo bài ra ta có:
7(a - b) = 1(a + b) = 24(a . b)
7a - 7b = a + b = 24ab
7a - a = b + 7b = 24ab
6a = 8b = 24ab => a = 24 : b (1)
6a = 8b => \(\frac{a}{8}=\frac{b}{6}\) (2)
thay (1) vào (2, ta có:
\(\frac{\frac{24}{b}}{8}=\frac{b}{6}\Rightarrow\)\(\frac{3}{b}=\frac{b}{6}\Rightarrow b^2=3\cdot6=18\Rightarrow b=\sqrt{18}\)
=> a = 24 : b = 24 : \(\sqrt{18}\)= \(\sqrt{2^5}\)
ko chắc nhưng chắc đề nhầm lẫn
trần thư ơi theo như cách bạn làm là tỉ lệ n ghịch chứ ko phải tỉ lẹ thuận