tìm uc{2n+1, 3n+1}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A là UC(2n+1,3n+1)
\(\rightarrow\)2n+1\(⋮\)A\(\Rightarrow\)3(2n+1)\(⋮\)A
\(\rightarrow\)3n+1\(⋮\)A\(\Rightarrow\)2(3n+1)\(⋮\)A
Từ đó suy ra:
3(2n+1)-2(3n+1)\(⋮\)A
6n+3-6n-2\(⋮\)A
1\(⋮\)A
\(\Rightarrow\)A=1
Vậy UC(2n+1,3n+1)=1
Gọi a là ước chung 2n + 1 và 3n +1 , a ∈ N
Theo bài ra ta có :
2n + 1 ⋮ a ; 3n + 1 ⋮ a
⇒ 3 ( 2n + 1 ) ⋮ a ; 2 ( 3n + 1 )
⇒ 6n + 3 ⋮ a ; 6n + 2 ⋮ a
⇒ ( 6n + 3 ) - ( 6n + 2 ) ⋮ a
⇒ 1 ⋮ a
⇒ a ∈ Ư ( 1 ) = { 1 ; -1 }
Vì a ∈ N nên a = 1
Vậy ước chung của 2n + 1 và 3n + 1 là 1
gọi ƯC ( 2n + 1 ; 3n +1 ) = d
+ 2n+1 chia hết cho d => 3(2n +1) chia hết cho d
hay 6n +2 chia hết cho d (1)
+ 3n + 1 chia hết cho d => 2(3N +1 ) chia hết cho d
hay 6n +2 chia hết cho d (2)
từ (1) và (2) => ( 6n + 3 - 6n - 2 ) chia hết cho d
=> 1 chia hết cho d
=> d là ước của 1
=> d thuộc tập hợp 1 ; -1
vậy tập hợp ƯC( 3n +1 ; 2n +1 ) = 1 ; -1
goi UC(2n+1;3n+1)=d
Ta co:+/2n+1 chia het cho d=>3(2n+1) chia het cho d
hay 6n+3 chia het cho d(1)
+/3n+1 chia het cho d=>2(3n+1) chia het cho d
hay 6n+2 chia het cho d(2)
Tu (1) va (2) =>(6n+3-6n-2) chia het cho d
=>1 chia het cho d
=>d la uoc cua 1
=>d thuoc tap hop 1;-1
=>tap hop uoc chung cua 2n+1 va 3n+1 la -1;1
Ta coi như sau......................................
\(d\inƯC\left\{2n+3;3n+1\right\}\)
\(\Rightarrow2n+3;3n+1⋮d\)
\(\Rightarrow\left\{\left(2n+3\right)-\left(3n+1\right)\right\}⋮d\)
\(\Rightarrow\left\{3\left(2n+3\right)-2\left(3n+1\right)\right\}⋮d\)
\(\Rightarrow\left\{\left(6n+9\right)-\left(6n+2\right)\right\}⋮d\)
\(\Rightarrow7⋮d\)
\(\Rightarrow d\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{1;7\right\}\)
\(\Rightarrow d=\left\{1;7\right\}\)
\(\RightarrowƯC\left(2n+3;3n+1\right)=\left\{1;7\right\}\)
a: Gọi d=UCLN(2n+1;6n+5)
\(\Leftrightarrow6n+5-3\left(2n+1\right)⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+1 là số lẻ
nên n=1
=>ƯCLN(2n+1;6n+5)=1
=>ƯC(2n+1;6n+5)={1;-1}
b: Gọi d=ƯCLN(2n+1;3n+1)
\(\Leftrightarrow6n+3-6n-2⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>ƯC(2n+1;3n+1)={1;-1}
c: Gọi d=UCLN(5n+3;2n+1)
\(\Leftrightarrow10n+6-10n-5⋮d\)
\(\Leftrightarrow1⋮d\)
=>ƯC(5n+3;2n+1)={1;-1}
\(a,lim\dfrac{2n^2+1}{3n^3-3n+3}\)
\(=lim\dfrac{\dfrac{2}{n}+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}=0\)
\(\lim\dfrac{-3n^3+1}{2n+5}=\lim\dfrac{-3n^2+\dfrac{1}{n}}{2+\dfrac{5}{n}}=\dfrac{-\infty}{2}=-\infty\)
\(\lim\dfrac{n^3-2n+1}{-3n-4}=\lim\dfrac{n^2-2+\dfrac{1}{n}}{-3-\dfrac{4}{n}}=\dfrac{+\infty}{-3}=-\infty\)