Cho tam giác ABC có góc A > 90 độ.Trên cạnh BC lấy các điểm D và E sao cho BD=BA, CE=CA.Gọi I là giao điểm các tia phân giác trong của tam giác ABC
a)Chứng minh BI,CI là đường trung trực của AB,AC
b)Chứng minh rằng IA=ID=IE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé. Mình giải thôi.
1)Bạn chia 2 TH.
a) Góc MDB lớn hơn hoac bằng 60 độ
=>MD<MB mà ME>MC=MB
=>MD<ME.
b) Góc MDB nhỏ hơn 60 độ.
=> MD giao CA tại E .
Dễ dàng cminh DM<ME.
2) Ta có tam giác ABC cân tại A => AI là phân giác cũng là trung trực BC
=> AI trung trực BC. Mà AO là trung trục BC.
=> AI trùng AO.
=>OI là trung trực BC
Đè bài cần xem lại nhé.
3)Ta có góc B > góc C => AC>AB
Có AC đối dienj góc vuông trong tam giác vuông AEC => AC>CE
Tương tự AB>BD
Tất cả các điều => AC-AB>CE-BD
Giải:
a) Xét ΔABD và ΔEBD có :
AB=BE(gt)
B1ˆ=B2ˆ(=12Bˆ)
BD: cạnh chung
⇒ΔABD=ΔEBD(c−g−c)
⇒DA=DE ( cạnh tương ứng )
Vậy DA=DE
b) Vì ΔABD=ΔEBD
⇒ góc A= góc BED
Mà góc A=900⇒ góc BED=900
Vậy góc BED =900
c) VÌ ΔABD=ΔEBD ( cmt)
=> góc ABD = góc EBD( 2 góc tương ứng)
Xét \(\Delta ABIv\text{à}\Delta EBI\)có:
AB = EB
góc ABD = góc EBD
BI cạnh chung
=>\(\Delta ABI=\text{ }\Delta EBI\)
=> góc AIB = góc EIB và IA = IE (1)
Mà góc AIB + góc EIB =180 0
=> \(\hept{\begin{cases}g\text{ócAIB=90^0}\\g\text{óc EIB=90^0}\end{cases}}\)(2)
Từ (1),(2) => BI là đường trung trực của AE
Mà I \(\in\)BD
=> BD là đường trung trực của AE
Vậy BD là đường trung trực của AE