K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2022

\(a,\Leftrightarrow\left(x+3\right)\left(2-1-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\1-2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\-2x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

\(b,\Leftrightarrow\left(x-2\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

26 tháng 4 2022

a) \(2\left(x+3\right)-\left(x+3\right)\left(1+2x\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(2-1-2x\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(1-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\1-2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

-Vậy \(S=\left\{-3;\dfrac{1}{2}\right\}\)

b) \(x^2-4x+4=9\)

\(\Leftrightarrow\left(x-2\right)^2-9=0\)

\(\Leftrightarrow\left(x-2-3\right)\left(x-2+3\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
-Vậy \(S=\left\{5;-1\right\}\)

26 tháng 4 2022

a)2.(x+3)-(3+x).(1`+2x)=0\(\Leftrightarrow\)2x+6-3-6x-x-2x\(^2\)=0

\(\Leftrightarrow\)-2x\(^2\)-5x+3=0\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+3=0\\1-2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy PT đã cho có tập nghiệm S=\(\left\{-3;\dfrac{1}{2}\right\}\)

b)x\(^2\)-4x+4=9\(\Leftrightarrow\)x\(^2\)-4x+4-9=0\(\Leftrightarrow\)x\(^2\)-4x-5=0

\(\Leftrightarrow\left\{{}\begin{matrix}5-x=0\\1+x=0\end{matrix}\right.\left\{{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

Vậy PT đã cho có tập nghiệm S=\(\left\{-1;5\right\}\)

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

Bài 1:

a. 

$(4x^2+4x+1)-x^2=0$

$\Leftrightarrow (2x+1)^2-x^2=0$

$\Leftrightarrow (2x+1-x)(2x+1+x)=0$

$\Leftrightarrow (x+1)(3x+1)=0$

$\Rightarrow x+1=0$ hoặc $3x+1=0$

$\Rightarrow x=-1$ hoặc $x=-\frac{1}{3}$

b.

$x^2-2x+1=4$

$\Leftrightarrow (x-1)^2=2^2$

$\Leftrightarrow (x-1)^2-2^2=0$

$\Leftrightarrow (x-1-2)(x-1+2)=0$

$\Leftrightarrow (x-3)(x+1)=0$

$\Leftrightarrow x-3=0$ hoặc $x+1=0$

$\Leftrightarrow x=3$ hoặc $x=-1$

c.

$x^2-5x+6=0$

$\Leftrightarrow (x^2-2x)-(3x-6)=0$

$\Leftrightarrow x(x-2)-3(x-2)=0$

$\Leftrightarrow (x-2)(x-3)=0$

$\Leftrightarrow x-2=0$ hoặc $x-3=0$

$\Leftrightarrow x=2$ hoặc $x=3$

 

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

2c.

ĐKXĐ: $x\neq 0$

PT $\Leftrightarrow x-\frac{6}{x}=x+\frac{3}{2}$

$\Leftrightarrow -\frac{6}{x}=\frac{3}{2}$

$\Leftrightarrow x=-4$ (tm)

2d.

ĐKXĐ: $x\neq 2$

PT $\Leftrightarrow \frac{1+3(x-2)}{x-2}=\frac{3-x}{x-2}$

$\Leftrightarrow \frac{3x-5}{x-2}=\frac{3-x}{x-2}$

$\Rightarrow 3x-5=3-x$

$\Leftrightarrow 4x=8$

$\Leftrightarrow x=2$ (không tm) 

Vậy pt vô nghiệm.

1:

a: =>(|x|+4)(|x|-1)=0

=>|x|-1=0

=>x=1; x=-1

b: =>x^2-4>=0

=>x>=2 hoặc x<=-2

d: =>|2x+5|=2x-5

=>x>=5/2 và (2x+5-2x+5)(2x+5+2x-5)=0

=>x=0(loại)

d: Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

\(\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

14 tháng 10 2021

\(a,ĐK:\left\{{}\begin{matrix}x\ge5\\x\le3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Vậy pt vô nghiệm

\(b,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow0x=2\Leftrightarrow x\in\varnothing\)

\(c,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\\ \Leftrightarrow\left(2x+3-2\sqrt{2x+3}+1\right)+\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left(\sqrt{2x+3}-1\right)^2+\left(x+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\\ d,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

14 tháng 10 2021

a) \(\sqrt{x-5}=\sqrt{3-x}\)

\(\left(\sqrt{x-5}\right)^2=\left(\sqrt{3-x}\right)^2\)

\(x-5=3-x\)

\(x=4\)

b) \(\sqrt{4-5x}=\sqrt{2-5x}\)

\(\left(\sqrt{4-5x}\right)^2=\left(\sqrt{2-5x}\right)^2\)

\(4-5x=2-5x\)

\(2=0\) (Vô lí)

15 tháng 9 2023

\(a.x^2-4x+4=0\)

\(\left(x-2\right)^2=0\)

=>x=2

b) \(2x^2-x=0\)

\(x\left(2x-1\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

c) \(x^2-5x+6=0\)

\(x^2-2x-3x+6=0\)

\(\left(x-2\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

d) \(x^2+y^2=0\)

Vì \(x^2,y^2\ge0\forall x,y\)

=>x=y=0

e) \(x^2+6x+10=0\)

\(\left(x+3\right)^2+1=0\)

Vì \(\left(x+3\right)^2\ge0\forall x\)

=> VT>0 \(\forall x\)

=> phương trình vô nghiệm

19 tháng 2 2022

\(a,\left(3x+1\right)^2-\left(2x-5\right)^2=0\\ \Leftrightarrow\left(3x+1+2x-5\right)\left(3x+1-2x+5\right)=0\\ \Leftrightarrow\left(5x-4\right)\left(x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-6\end{matrix}\right.\\ b,\left(x+3\right)\left(4-3x\right)=x^2+6x+9\\ \Leftrightarrow\left(x+3\right)\left(4-3x\right)-\left(x+3\right)^2=0\\ \Leftrightarrow\left(x+3\right)\left(4-3x-x-3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(1-4x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{4}\end{matrix}\right.\)

14 tháng 1 2021

a) (x - 7)(2x + 8) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\2x+8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\2x=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)

Vậy: S = {7; -4}

b) Tương tự câu a

c)  (x - 1)(2x + 7)(x2 + 2) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\\x^2+2=0\end{matrix}\right.\)

Mà: x+ 2 > 0 với mọi x

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=-7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{1;-\dfrac{7}{2}\right\}\)

d) (2x - 1)(x + 8)(x - 5) = 0

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+8=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\x=-8\\x=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-8\\x=5\end{matrix}\right.\)

Vậy \(S=\left\{\dfrac{1}{2};-8;5\right\}\)

 

14 tháng 1 2021

a/ Pt \(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\2x+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)

Vậy \(S=\left\{7;-4\right\}\)

b/ pt \(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\5x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=\dfrac{2}{5}\end{matrix}\right.\)

c/ pt \(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\) (\(x^2+2>0\forall x\))\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)

d/ pt \(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+8=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-8\\x=5\end{matrix}\right.\)