cho tam giác ABC. Lấy I là điểm chính giữa của AC, điểm M trên cạnh BC sao cho BM=1/5 BC. Các đoạn AM,BI cắt nhau tại N, nối N với C, nối M với I. Biết AM = 18cm. Tính độ dài đoạn thẳng MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khuya rồi gửi đề dài ntn ai làm bn.....
...hỏi từng câu thôi
với lại đề copy đúng ko?(nhiều như vậy mà)
mai hỏi nha....mk ko muốn ngủ nhưng nhác trả lời^^
1. Cho tam giác ABC, D là điểm chính giữa cạnh BC, E là điểm chính giữa cạnh AC. Hai đoạn thẳng AD và BE cắt nhau tại I. Hãy so sánh diện tích tam giác AIE và BID.
CHỨNG MINH:
E là điểm giữa của AC
D là điểm giữa BC
=> ED là đường trung bình của tg ABC => ED // AB => khoảng cách từ E đến AB = khoảng cách từ D đến AB
Xét hai tg ABE và tg ABD có chung cạnh đáy AB; đường cao bằng nhau => SABE = SABD
Hai tgiác trên có phần diện tích chung là SAIB nên phần diện tích còn lại = nhau
=> SAIE = SBID
2. Cho tam giác ABC,đường cao AH = 48cm, BC = 100cm. Trên cạnh AB lấy các điểm E và D sao cho AE = ED = DB, trên cạnh AB lấy các điểm M và N sao cho AM = ED = DB, trên cạnh AC lấy các điểm M và N sao cho AM=MN=NC. Tính:
a) Diện tích tam giác ABC.
b) Diện tích tam giác BNC và tam giác BNA
c) Diện tích tam giác DEMN.
CHỨNG MINH:
a) Diện tích tg ABC là:
48 x 100 x 1/2 = 2400 (cm2)
b) Diện tích tg BNC = 1/3 diện tích tg ABC vì:
- Chung chiều cao hạ từ đỉnh B xuống AC
- Đáy NC = 1/3 AC
Diện tích tg BNC là:
2400 : 1/3 = 800 (cm2)
Diện tích tg BNA là:
2400 - 800 = 1600 (cm2)
c) Diện tích tg ABN = 2/3 ABC vì:
- Chung chiều cao hạ từ B xuống AC
- Đáy AN = 2/3 AC
Diện tích tg AEN = 1/3 ABN vì:
- Chung chiều cao hạ từ N xuống AB
- Đáy AE = 1/3 AB
Diện tích tg ANE là:
1600 x 1/3 = 1600/3 (cm2)
Diện tích tg AEM = 1/2 AEN vì:
- Chung chiều cao hạ từ E xuống AN
- Đáy AM = 1/2 AN
Diện tích tg AEM là:
1600/3 x 1/2 = 800/3 (cm2)
Diện tích hthang DEMN là:
2400 - 800 - 800/3 = 4000/3 (cm2)
:))
bài 3 chệu :((
Ta có:
Nối \(B\) với \(O\)
\(S_{OCM}=S_{OMB}\left(BM=MC\right)\) \(\Rightarrow\) chung đường cao hạ từ \(O\)
\(S_{CNB}=S_{ACN}=\left(AN=NB\right)\Rightarrow\) chung đường cao hạ từ \(C\)
\(S_{ONB}=S_{AON}.S_{AON}=\dfrac{1}{2}S_{ABC}-S_{ONMB}.S_{OMC}\)
\(=\dfrac{1}{2}S_{ABC}-S_{ONMB}\)
\(\Rightarrow S_{AON}=S_{OMC};S_{OMC}=\dfrac{1}{6}S_{ABC}\) và \(S_{ACO}\)
Độ dài đoạn \(OA\) là:
\(24.\left(\dfrac{1}{2}+\dfrac{1}{6}\right)=16\left(cm\right)\)
ĐÂY LÀ TOÁN LỚP SÁU MÌNH CHỌN NHẦM LỚP MONG CÁC BẠN THÔNG CẢM
hai tg ABM và tg ABC có chung đường cao từ A->BC nên
\(\dfrac{S_{ABM}}{S_{ABC}}=\dfrac{BM}{BC}=\dfrac{1}{5}\Rightarrow S_{ABM}=\dfrac{1}{5}xS_{ABC}\)
\(\Rightarrow S_{ACM}=S_{ABC}-S_{ABM}=S_{ABC}-\dfrac{1}{5}xS_{ABC}=\dfrac{4}{5}xS_{ABC}\)
Hai tg AMI và tg ACM có chung đường cao từ M->AC nên
\(\dfrac{S_{AMI}}{S_{ACM}}=\dfrac{AI}{AC}=\dfrac{1}{2}\Rightarrow S_{AMI}=\dfrac{1}{2}xS_{ACM}=\dfrac{1}{2}x\dfrac{4}{5}xS_{ABC}=\dfrac{2}{5}xS_{ABC}\)
Hai tg ABM và tg AMI có chung AM nên
\(\dfrac{S_{ABM}}{S_{AMI}}=\) đường cao từ B->AM / đường cao từ I->AM =\(\dfrac{1}{5}xS_{ABC}:\dfrac{2}{5}xS_{ABC}=\dfrac{1}{2}\Rightarrow S_{AMI}=2xS_{ABM}=2x\dfrac{1}{5}xS_{ABC}=\dfrac{2}{5}xS_{ABC}\)
Hai tg BCI và tg ABC có chung đường cao từ B->AC nên
\(\dfrac{S_{BCI}}{S_{ABC}}=\dfrac{CI}{AC}=\dfrac{1}{2}\Rightarrow S_{BCI}=\dfrac{1}{2}xS_{ABC}\)
Hai tg BMI và tg BCI có chung đường cao từ I->BC nên
\(\dfrac{S_{BMI}}{S_{BCI}}=\dfrac{BM}{BC}=\dfrac{1}{5}\Rightarrow S_{BMI}=\dfrac{1}{5}xS_{BCI}=\dfrac{1}{5}x\dfrac{1}{2}xS_{ABC}=\dfrac{1}{10}xS_{ABC}\)
Hai tg BMN và tg IMN có chung MN nên
\(\dfrac{S_{BMN}}{S_{IMN}}=\)đường cao từ B->AM / đường cao từ I->AM\(=\dfrac{1}{2}\)
\(\Rightarrow S_{IMN}=\dfrac{2}{3}xS_{BMI}=\dfrac{2}{3}x\dfrac{1}{10}xS_{ABC}=\dfrac{1}{15}xS_{ABC}\)
\(\Rightarrow\dfrac{S_{IMN}}{S_{AMI}}=\dfrac{1}{15}xS_{ABC}:\dfrac{2}{5}xS_{ABC}=\dfrac{1}{6}\)
Hai tg IMN và tg AMI có chung đường cao từ I->AM nên
\(\dfrac{S_{IMN}}{S_{AMI}}=\dfrac{MN}{AM}=\dfrac{1}{6}\Rightarrow MN=\dfrac{1}{6}xAM=\dfrac{1}{6}x18=3cm\)