K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2022

a. Xét ΔABC vuông tại A, có:

AB2 + AC= BC2 (Định lý Py-ta-go)

⇒ 62 + 82 = BC2 (thay số)

⇒ BC2 = 100

⇒ BC = 10

25 tháng 4 2022

b) Có: AH vuông góc với BC (gt)

⇒ góc AHB = góc AHD (tính chất ....)

Xét ΔAHB và ΔAHD, có:

BH = HD (gt)

góc AHB = AHD (cmt)

AH chung

⇒ ΔAHB = ΔAHD (c.g.c)

⇒ AB = AD (cặp cạnh tương ứng) (đpcm)

23 tháng 3 2022

a)

Áp dụng định lý pitago vào tam giác vuông ABC, có:

BC2=AB2+AC2BC2=AB2+AC2

⇒BC=√62+82=√100=10cm⇒BC=62+82=100=10cm

b.Xét tam giác vuông ABH và tam giác vuông ADH, có:

HD = HB ( gt )

AH: cạnh chung

Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )

=> AB = AD ( 2 cạnh tương ứng )

bn tham khảo

23 tháng 3 2022

a,Áp dụng Đ. L. py-ta-go, có:

BC2=AC2+AB2

=>BC2=82+62

           =64+36.

           =100.

=>BC=10cm.

b, Xét tg AHB và tg AHD, có:

AH chung

góc AHB= góc AHD(=90o)

HB= DH(gt)

=>tg AHB= tg AHD(2 cạnh góc vuông)

=>AB= AD(2 cạnh tương ứng)

c, Kẻ E với C, tạo thành cạnh EC.

    Kẻ E với B, tạo thành cạnh EB.

Ta có: góc BHA=90o, suy ra: góc BHA= góc EHC(2 góc đối đỉnh)

=>góc BHA= góc EHC(=90o)

=>ED vuông góc với AC(đpcm)

A C B H D E

2 tháng 3 2022

Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)

b.Xét tam giác vuông ABH và tam giác vuông ADH, có:

HD = HB ( gt )

AH: cạnh chung

Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )

=> AB = AD ( 2 cạnh tương ứng )

Sửa đề : 

a, Tính độ dài cạnh AC

Áp dụng định lí Pytago trong \(\Delta ABC\perp A\)có :

\(AB^2+AC^2=BC^2\)

\(AC^2=BC^2-AB^2=10^2-6^2=64\)

\(AC=\sqrt{64}=8\)

b, Xét \(\Delta AMC\)và \(\Delta BMD\)có :

\(MB=MA\left(gt\right)\)

\(\widehat{AMC}=\widehat{BMD}\)( 2 góc đối đỉnh )

\(MD=MC\left(gt\right)\)

= > \(\Delta AMC=\Delta DMB\)

= > DB = AC = 8 cm ( 2 cạnh tương ứng )

c, thiếu đề bài

NM
6 tháng 3 2022

ta có : 

undefined

c. mình đâu có thấy điểm K nào đâu nhỉ

26 tháng 4 2016

a / BC2 = AB2 + AC

26 tháng 4 2016

a) xét tam giac ABC vuông tại A ta có

BC2= AB2+AC2 (định lý pitago)

BC2=62+82

BC2=100

BC=10

b) Xét tam giac ABH và tam giac ADH ta có

HB=HD (gt)

AH=AH (cạnh chung)

góc AHB= góc AHD (=90)

-> tam giác ABH= tam giac ADH (c-g-c)

-> AB= AD ( 2 cạnh tương ứng)

c) 

Xét tam giac ABHvà tam giac EDH ta có

HB=HD (gt)

AH=EH (gt)

góc AHB= góc EHD (=90)

-> tam giác ABH= tam giac EDH (c-g-c)

-> góc ABH = góc EDH (2 góc tương ứng )

mà 2 góc  nằm ở vị trí sole trong

nên AB// ED

lại có AB vuông góc AC ( tam giac ABC vuông tại A)

do đó ED vuông góc AC

18 tháng 3 2021

a)áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A 

ta có:

BC2=AB2+AC2

BC2=62+82

BC2=36+64=100

⇒BC=\(\sqrt{100}\)=10

vậy BC=10

AB và AC không bằng nhau nên không chứng minh được bạn ơi

còn ED và AC cũng không vuông góc nên không chứng minh được luôn 

Xin bạn đừng ném đá

22 tháng 3 2021

undefined

5 tháng 2 2022

phạm duy ơi câu c là 2 cạnh góc vuông đúng ko 

11 tháng 12 2021

\(a,\Delta ABC\) vuông tại A nên \(\widehat{ABC}=90^0-\widehat{ACB}=60^0\)

11 tháng 12 2021

\(b,\left\{{}\begin{matrix}AH\text{ chung}\\\widehat{AHD}=\widehat{AHB}=90^0\\HD=HB\end{matrix}\right.\Rightarrow\Delta AHD=\Delta AHB\left(c.g.c\right)\\ \Rightarrow AD=AB\\ c,DE\text{//}AB\Rightarrow\widehat{HDE}=\widehat{HBA}\left(\text{so le trong}\right)\\ \Rightarrow\widehat{HDE}=\widehat{HDA}\left(\Delta AHD=\Delta AHB\right)\\ \left\{{}\begin{matrix}\widehat{HDE}=\widehat{HBA}\\\widehat{DHE}=\widehat{AHB}\left(\text{đối đỉnh}\right)\\DH=HB\end{matrix}\right.\Rightarrow\Delta BHA=\Delta DHE\left(g.c.g\right)\\ \Rightarrow AB=DE=AD\left(\text{câu b}\right)\\ \left\{{}\begin{matrix}\widehat{HDE}=\widehat{HDA}\\AD=DE\\DH\text{ chung}\end{matrix}\right.\Rightarrow\Delta DHA=\Delta DHE\left(g.c.g\right)\)