Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Áp dụng định lý pitago vào tam giác vuông ABC, có:
BC2=AB2+AC2BC2=AB2+AC2
⇒BC=√62+82=√100=10cm⇒BC=62+82=100=10cm
b.Xét tam giác vuông ABH và tam giác vuông ADH, có:
HD = HB ( gt )
AH: cạnh chung
Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )
=> AB = AD ( 2 cạnh tương ứng )
bn tham khảo
a,Áp dụng Đ. L. py-ta-go, có:
BC2=AC2+AB2
=>BC2=82+62
=64+36.
=100.
=>BC=10cm.
b, Xét tg AHB và tg AHD, có:
AH chung
góc AHB= góc AHD(=90o)
HB= DH(gt)
=>tg AHB= tg AHD(2 cạnh góc vuông)
=>AB= AD(2 cạnh tương ứng)
c, Kẻ E với C, tạo thành cạnh EC.
Kẻ E với B, tạo thành cạnh EB.
Ta có: góc BHA=90o, suy ra: góc BHA= góc EHC(2 góc đối đỉnh)
=>góc BHA= góc EHC(=90o)
=>ED vuông góc với AC(đpcm)
A) Xét tam giác ABH và tam giác ADH có :
HB=HD ( giả thiết)
HA ( cạnh chung)
góc DHA=góc BHA=90độ
suy ra tam giác ABH=tam giác ADH ( C-G-C)
B)Xét tam giác EHD và tam giác BHAcó:
HE=HA( GT)
góc AHB=góc DHE(hai góc đối đỉnh )
HD=HB( GT)
vậy suy ra : tam giácBHA= tam giác EHD( C-G-C)
vậy BA=ED( hai cạnh tương ứng)
C)ta gọi giao điểm của ED và AC là I
ta có góc IEA = góc EAB( hai góc tương ứng)
mà hai góc này lại ở
vị trí sole trong ở hai đoạn thẳng BA và EI
suy ra : BAsong song với EI
mà ta lại có góc BAI = 90 độ mà lại bù nhau với góc EIA vậy góc EIA =180 độ - 90 độ =90 độ
vậy EI vuong góc với AC
a/ Xét tg vuông ABH và tg vuông ADH có
AH chung
BH=HD (gt)
=> tg ABH = tg ADH (Hai tg vuông có 2 cạnh góc vuông = nhau)
=> AB = AD
b/
Ta có tg ABH = tg ADH \(\Rightarrow\widehat{BAH}=\widehat{DAH}\)
IE//AB \(\Rightarrow\widehat{BAH}=\widehat{DEH}\)
\(\Rightarrow\widehat{DAH}=\widehat{DEH}\) => tg DAE cân tại D => AD = DE
Mà AB = AD (cmt)
=> AB = DE
IE//AB => DE//AB
=> ABED là hình bình hành (Tứ giác có cặp cạnh đối // và bằng nhau là hình bình hành)
=> HA = HE (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)
c/
Xét tg vuông ACH và tg vuông ECH có
CH chung
HA=HE (cmt)
=> tg ACH = tg ECH (Hai tg vuông có 2 cạnh góc vuông = nhau)
\(\Rightarrow\widehat{ACH}=\widehat{ECH}\) (1)
IE//AB \(\Rightarrow\widehat{IDC}=\widehat{ABH}\) (góc đồng vị)
\(\widehat{KDC}=\widehat{ADH}\) (góc đối đỉnh)
tg ABH = tg ADH \(\Rightarrow\widehat{ABH}=\widehat{ADH}\)
\(\Rightarrow\widehat{IDC}=\widehat{KDC}\) (2)
Xét tg IDC và tg KDC có DC chung (3)
Từ (1) (2) (3) => tg IDC = tg KDC => DI = DK
d/
Ta có
tg IDC = tg KDC (cmt) \(\Rightarrow CI=CK\) => tg CIK cân tại C
tg IDC = tg KDC (cmt) \(\Rightarrow\widehat{ICD}=\widehat{KDC}\) => CD là phân giác \(\widehat{ICK}\)
\(\Rightarrow CD\perp IK\) (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)
\(\Rightarrow IK\perp BC\)
Tham Khảo :
Để chứng minh các điều kiện trên, ta sẽ sử dụng các định lí và quy tắc trong hình học Euclid.
Chứng minh AB = AD:
Ta có AH vuông góc với BC, nên tam giác ABC và tam giác AHD là hai tam giác vuông cân.
Vì BH = HD (theo đề bài), nên ta có AB = AD (vì hai tam giác vuông cân có cạnh góc vuông bằng nhau).
Chứng minh H là trung điểm AE:
Vì BH = HD (theo đề bài), nên ta có AH là đường cao của tam giác ABC.
Do đó, H là trung điểm của cạnh BC (do đường cao chia đôi cạnh đáy).
Chứng minh DI = DK:
Ta có DE || AB (do DE và AB đều song song với BC).
Vì DE || AB và AH là đường cao của tam giác ABC, nên ta có DI/DK = AE/EB (theo định lí đường cao).
Vì H là trung điểm của AE (theo bước 2), nên ta có AE = 2AH.
Từ đó, ta có DI/DK = 2AH/EB.
Vì BH = HD (theo đề bài), nên ta có EB = 2BH.
Từ đó, ta có DI/DK = 2AH/(2BH) = AH/BH = 1.
Vậy, ta có DI = DK.
Chứng minh IK vuông góc với BC:
Ta có DE || AB (do DE và AB đều song song với BC).
Vì IK là đường chéo của tứ giác AIDE, nên ta cần chứng minh tứ giác AIDE là hình bình hành.
Ta đã chứng minh DI = DK (theo bước 3), nên tứ giác AIDE là hình bình hành.
Do đó, ta có IK vuông góc với BC (vì đường chéo của hình bình hành vuông góc với cạnh đáy).
Vậy, các điều kiện đã được chứng minh.
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a: Xét (I) có
ΔAHC nội tiếp đường tròn
AC là đường kính
Do đó: ΔAHC vuông tại H
hay AH\(\perp\)BC
a. Ta có: Tam giác HAC nội tiếp chắn nửa đường tròn =>
b. Ta có:
c. Ta có KA = KB HB = HD
=> KH//AD
=> (1)
Ta có Tam giác ABC vuông tại A có: (2)
Tam giác ABD cân tại A => (3)
Từ 1, 2, 3 => => HK là tiếp tuyến đường tròn
a: BC=15cm
b: Xét ΔABM có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔABM cân tại B
c: Xét tứ giác ABNC có
K là trung điểm của BC
K là trung điểm của AN
Do đó: ABNC là hình bình hành
Suy ra: CN=AB
mà AB=BM
nên CN=BM
xét tam giác ABE và tam giác ADE
AE chung
góc BAE = góc DAE(AE la tia phân giác của góc E)
AB = AD ( gt)
=> tam giác ABE = tam giac DAE ( c.g.c)
b) xét tam giác ABI và tam giác ADI
AI chung
góc BAE = góc DAE
tam giác ABI=tam giác ADI
=> BI = DI ( 2 cạnh t/ứ )
=> I là trung điểm của BD
a)Xét △ABD và △CED có
AD=DC ( vì D là trung điểm của AC)
góc ADB=góc CDE( 2 góc đối đỉnh)
BD=ED ( giả thiết)
=> △ABD = △CED(c-g-c)
b)ta có KD ⊥AC => góc KDA=góc KDC =90 độ
Xét △ADK (góc KDA=90 độ)và △CDK (góc KDC=90 độ)có
KD : cạnh chung
AD=CD(Vì D là trung điểm của AC)
=> △ADK=△CDK(2 cạnh góc vuông )
=> AK=CK( 2 cạnh tương ứng)
vậy AK=CK
c) Xét △BDk và △EDH có
BD=DE(giả thiết )
góc BDK=góc EDH(2 góc đối đỉnh)
DK=DH( giả thiết)
=>△BDK =△EDH (c-g-c)
=>gócKBD=góc DEH( 2 góc tương ứng) hay góc CBE =góc BEH mà 2 góc này kà 2 góc so le trong của đường thẳng BE cắt 2 đương thẳng BC và EH
=>BC//EH
Xét △KDC và△HDA có
AD=DC (Vì D là trung điểm của AC)
góc KDC= góc HDA(2 góc đối đỉnh )
KD=DH (giả thiết)
=>△KDC =△HDA(c-g-c)
=> góc KCD = góc DAH( 2 góc tương ứng) hay góc BCA= góc CAH mà 2 góc này là 2 góc so le trong của đường thẳng AC cắt 2 đường thẳng BC và AH
=>BC //AH
Vì BC//EH
mà BC//AH => 3 điểm A,H,E thẳng hàng
Vậy 3 điểm A,H,E thẳng hàng
a)Xét △ABD và △CED có
AD=DC ( vì D là trung điểm của AC)
góc ADB=góc CDE( 2 góc đối đỉnh)
BD=ED ( giả thiết)
=> △ABD = △CED(c-g-c)
b)ta có KD ⊥AC => góc KDA=góc KDC =90 độ
Xét △ADK (góc KDA=90 độ)và △CDK (góc KDC=90 độ)có
KD : cạnh chung
AD=CD(Vì D là trung điểm của AC)
=> △ADK=△CDK(2 cạnh góc vuông )
=> AK=CK( 2 cạnh tương ứng)
vậy AK=CK
c) Xét △BDk và △EDH có
BD=DE(giả thiết )
góc BDK=góc EDH(2 góc đối đỉnh)
DK=DH( giả thiết)
=>△BDK =△EDH (c-g-c)
=>gócKBD=góc DEH( 2 góc tương ứng) hay góc CBE =góc BEH mà 2 góc này kà 2 góc so le trong của đường thẳng BE cắt 2 đương thẳng BC và EH
=>BC//EH
Xét △KDC và△HDA có
AD=DC (Vì D là trung điểm của AC)
góc KDC= góc HDA(2 góc đối đỉnh )
KD=DH (giả thiết)
=>△KDC =△HDA(c-g-c)
=> góc KCD = góc DAH( 2 góc tương ứng) hay góc BCA= góc CAH mà 2 góc này là 2 góc so le trong của đường thẳng AC cắt 2 đường thẳng BC và AH
=>BC //AH
Vì BC//EH
mà BC//AH => 3 điểm A,H,E thẳng hàng
Vậy 3 điểm A,H,E thẳng hàng
a. Xét ΔABC vuông tại A, có:
AB2 + AC2 = BC2 (Định lý Py-ta-go)
⇒ 62 + 82 = BC2 (thay số)
⇒ BC2 = 100
⇒ BC = 10
b) Có: AH vuông góc với BC (gt)
⇒ góc AHB = góc AHD (tính chất ....)
Xét ΔAHB và ΔAHD, có:
BH = HD (gt)
góc AHB = AHD (cmt)
AH chung
⇒ ΔAHB = ΔAHD (c.g.c)
⇒ AB = AD (cặp cạnh tương ứng) (đpcm)