K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2022

a. Xét ΔABC vuông tại A, có:

AB2 + AC= BC2 (Định lý Py-ta-go)

⇒ 62 + 82 = BC2 (thay số)

⇒ BC2 = 100

⇒ BC = 10

25 tháng 4 2022

b) Có: AH vuông góc với BC (gt)

⇒ góc AHB = góc AHD (tính chất ....)

Xét ΔAHB và ΔAHD, có:

BH = HD (gt)

góc AHB = AHD (cmt)

AH chung

⇒ ΔAHB = ΔAHD (c.g.c)

⇒ AB = AD (cặp cạnh tương ứng) (đpcm)

23 tháng 3 2022

a)

Áp dụng định lý pitago vào tam giác vuông ABC, có:

BC2=AB2+AC2BC2=AB2+AC2

⇒BC=√62+82=√100=10cm⇒BC=62+82=100=10cm

b.Xét tam giác vuông ABH và tam giác vuông ADH, có:

HD = HB ( gt )

AH: cạnh chung

Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )

=> AB = AD ( 2 cạnh tương ứng )

bn tham khảo

23 tháng 3 2022

a,Áp dụng Đ. L. py-ta-go, có:

BC2=AC2+AB2

=>BC2=82+62

           =64+36.

           =100.

=>BC=10cm.

b, Xét tg AHB và tg AHD, có:

AH chung

góc AHB= góc AHD(=90o)

HB= DH(gt)

=>tg AHB= tg AHD(2 cạnh góc vuông)

=>AB= AD(2 cạnh tương ứng)

c, Kẻ E với C, tạo thành cạnh EC.

    Kẻ E với B, tạo thành cạnh EB.

Ta có: góc BHA=90o, suy ra: góc BHA= góc EHC(2 góc đối đỉnh)

=>góc BHA= góc EHC(=90o)

=>ED vuông góc với AC(đpcm)

A C B H D E

18 tháng 12 2016

A) Xét tam giác ABH và tam giác ADH có :

HB=HD ( giả thiết)

HA ( cạnh chung)

góc DHA=góc BHA=90độ

suy ra tam giác ABH=tam giác ADH ( C-G-C)

B)Xét tam giác EHD và tam giác BHAcó:

HE=HA( GT)

góc AHB=góc DHE(hai góc đối đỉnh )

HD=HB( GT)

vậy suy ra : tam giácBHA= tam giác EHD( C-G-C)

vậy BA=ED( hai cạnh tương ứng)

C)ta gọi giao điểm của ED và AC là I

ta có góc IEA = góc EAB( hai góc tương ứng)

mà hai góc này lại ở

 vị trí sole  trong ở hai đoạn thẳng BA và EI

suy ra :  BAsong song với EI

mà ta lại có góc BAI = 90 độ mà lại bù nhau với góc EIA vậy góc EIA =180 độ - 90 độ =90 độ

vậy EI vuong góc với AC

4 tháng 8 2023

A B C H D E I K

a/ Xét tg vuông ABH và tg vuông ADH có

AH chung

BH=HD (gt)

=> tg ABH = tg ADH (Hai tg vuông có 2 cạnh góc vuông = nhau)

=> AB = AD

b/

Ta có tg ABH = tg ADH \(\Rightarrow\widehat{BAH}=\widehat{DAH}\)

IE//AB \(\Rightarrow\widehat{BAH}=\widehat{DEH}\)

\(\Rightarrow\widehat{DAH}=\widehat{DEH}\) => tg DAE cân tại D => AD = DE

Mà AB = AD (cmt)

=> AB = DE

IE//AB => DE//AB

=> ABED là hình bình hành (Tứ giác có cặp cạnh đối // và bằng nhau là hình bình hành)

=> HA = HE (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)

c/

Xét tg vuông ACH và tg vuông ECH có

CH chung

HA=HE (cmt)

=> tg ACH = tg ECH (Hai tg vuông có 2 cạnh góc vuông = nhau)

\(\Rightarrow\widehat{ACH}=\widehat{ECH}\) (1)

IE//AB \(\Rightarrow\widehat{IDC}=\widehat{ABH}\) (góc đồng vị)

\(\widehat{KDC}=\widehat{ADH}\) (góc đối đỉnh)

tg ABH = tg ADH \(\Rightarrow\widehat{ABH}=\widehat{ADH}\)

\(\Rightarrow\widehat{IDC}=\widehat{KDC}\) (2)

Xét tg IDC và tg KDC có DC chung (3)

Từ (1) (2) (3) => tg IDC = tg KDC => DI = DK

d/

Ta có

 tg IDC = tg KDC (cmt) \(\Rightarrow CI=CK\) => tg CIK cân tại C

 tg IDC = tg KDC (cmt) \(\Rightarrow\widehat{ICD}=\widehat{KDC}\) => CD là phân giác \(\widehat{ICK}\)

\(\Rightarrow CD\perp IK\) (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)

\(\Rightarrow IK\perp BC\)

 

 

4 tháng 8 2023

Tham Khảo :

Để chứng minh các điều kiện trên, ta sẽ sử dụng các định lí và quy tắc trong hình học Euclid.

Chứng minh AB = AD:
Ta có AH vuông góc với BC, nên tam giác ABC và tam giác AHD là hai tam giác vuông cân.
Vì BH = HD (theo đề bài), nên ta có AB = AD (vì hai tam giác vuông cân có cạnh góc vuông bằng nhau).
Chứng minh H là trung điểm AE:
Vì BH = HD (theo đề bài), nên ta có AH là đường cao của tam giác ABC.
Do đó, H là trung điểm của cạnh BC (do đường cao chia đôi cạnh đáy).
Chứng minh DI = DK:
Ta có DE || AB (do DE và AB đều song song với BC).
Vì DE || AB và AH là đường cao của tam giác ABC, nên ta có DI/DK = AE/EB (theo định lí đường cao).
Vì H là trung điểm của AE (theo bước 2), nên ta có AE = 2AH.
Từ đó, ta có DI/DK = 2AH/EB.
Vì BH = HD (theo đề bài), nên ta có EB = 2BH.
Từ đó, ta có DI/DK = 2AH/(2BH) = AH/BH = 1.
Vậy, ta có DI = DK.
Chứng minh IK vuông góc với BC:
Ta có DE || AB (do DE và AB đều song song với BC).
Vì IK là đường chéo của tứ giác AIDE, nên ta cần chứng minh tứ giác AIDE là hình bình hành.
Ta đã chứng minh DI = DK (theo bước 3), nên tứ giác AIDE là hình bình hành.
Do đó, ta có IK vuông góc với BC (vì đường chéo của hình bình hành vuông góc với cạnh đáy).
Vậy, các điều kiện đã được chứng minh.

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

18 tháng 10 2021

a: Xét (I) có 

ΔAHC nội tiếp đường tròn

AC là đường kính

Do đó: ΔAHC vuông tại H

hay AH\(\perp\)BC

19 tháng 10 2021

 

ảnh

a. Ta có: Tam giác HAC nội tiếp chắn nửa đường tròn => \widehat {AHC} = {90^0} \Rightarrow AH \bot BC

b. Ta có:

\begin{matrix}
 \left\{ {\begin{array}{*{20}{c}}
 {\widehat {AEC} = \widehat {CHA} = {{90}^0}} \\ 
 {\widehat {ECH} = \widehat {EAH}} 
\end{array} \Rightarrow \vartriangle AHD \sim \vartriangle CED} \right. \hfill \\
 \Rightarrow \frac{{AD}}{{CD}} = \frac{{DH}}{{DE}} \Rightarrow DA.CE = DH.DC \hfill \\ 
\end{matrix}

c. Ta có KA = KB HB = HD

=> KH//AD

=> \widehat {AHK} = \widehat {HAD} (1)

Ta có Tam giác ABC vuông tại A có: AH \bot BC \Rightarrow \widehat {ACH} = \widehat {HAB}(2)

Tam giác ABD cân tại A => \widehat {HAD} = \widehat {HAB} (3)

Từ 1, 2, 3 => \widehat {AHK} = \widehat {ACB} => HK là tiếp tuyến đường tròn

12 tháng 12 2017

khó lắm đề thi toán cuối kì 1 lớp 7

4 tháng 1 2019

a, TG HAB có :

BAH +  BHA + B = 180

=> BAH + 90 + 60 = 180

=> HAB = 30 

b,chứng minh tam giác AHI và tam giác ADI bằng nhau đúng ko

Xét TG AIH và TG AID có :

AH = AD (gt)

AI cạnh chung

HI = ID (gt)

=> TG AIH = TG AID (c-c-c)

a: BC=15cm

b: Xét ΔABM có

BH là đường cao

BH là đường trung tuyến

Do đó: ΔABM cân tại B

c: Xét tứ giác ABNC có

K là trung điểm của BC

K là trung điểm của AN

Do đó: ABNC là hình bình hành

Suy ra: CN=AB

mà AB=BM

nên CN=BM

16 tháng 3 2022

cảm ơn bạn nhiều nhé ^^

1.Cho tam giác có góc A = 60 độ và AB<AC . Trên cạnh AC lấy điểm D sao cho AD=AB. Tia phân giác của góc A cắt BC ở Ea.Chứng minh tam giác ABE = tam giác ADEb.AE cắt BD tại I .Chứng minh I là trung điểm của BDc.Trên tia AI lấy điểm H sao cho IA=IH. Chứng minh AB song song với HD d.Tính số đo góc ABD2.Cho tam giác ABC vuông tại A có góc B = 2 Góc C a.Tính số đo của góc B và C của Tam giác ABCb.Kẻ AH vuông góc với BC (...
Đọc tiếp

1.Cho tam giác có góc A = 60 độ và AB<AC . Trên cạnh AC lấy điểm D sao cho AD=AB. Tia phân giác của góc A cắt BC ở E

a.Chứng minh tam giác ABE = tam giác ADE

b.AE cắt BD tại I .Chứng minh I là trung điểm của BD

c.Trên tia AI lấy điểm H sao cho IA=IH. Chứng minh AB song song với HD 

d.Tính số đo góc ABD

2.Cho tam giác ABC vuông tại A có góc B = 2 Góc C 

a.Tính số đo của góc B và C của Tam giác ABC

b.Kẻ AH vuông góc với BC ( H thuộc BC) .Trên tia HC lấy D sao cho H là trung điểm của BD .Chứng minh Tam giác ABH= tam giác AHD

c.Chứng minh AD= Cd

d.TRên tia đối của HA lấy K sao cho HK= HA. Chứng minh KD là đường trung trực của AC.

3.Cho tam giác ABC có góc A= 90 độ ( AB<AC) kẻ AH vuông góc với BC ,. Trên Bc lấy I sao cho HI=HB. Trên tia đối của HA lấy K sao cho HK=HA

a.chứng minh tam giác ABH=tam giác KIH

b.Chứng minh AB song song với KI

c.Vẽ IE vuông góc với AC tại E . Chứng minh K, I,E thẳng hàng 

Giải giúp mình với các bạn . Mình cần rất gấp . Mai phải nộp rồi

Thanks nhiều nghen

1
9 tháng 5 2021

xét tam giác ABE và tam giác ADE 

AE chung 

góc BAE = góc DAE(AE la tia phân giác của góc E)

AB = AD ( gt)

=> tam giác ABE = tam giac DAE  ( c.g.c)

b) xét tam giác  ABI và tam giác ADI

AI chung 

góc BAE =  góc DAE 

tam giác  ABI=tam giác ADI

=> BI = DI ( 2 cạnh t/ứ )

=> I là trung điểm của BD

24 tháng 12 2020

a)Xét △ABD và △CED có 

AD=DC ( vì D là trung điểm của AC)

góc ADB=góc CDE( 2 góc đối đỉnh)

BD=ED ( giả thiết)

=>  △ABD = △CED(c-g-c)

b)ta có KD ⊥AC => góc KDA=góc KDC =90 độ

Xét △ADK (góc KDA=90 độ)và △CDK (góc KDC=90 độ)có 

KD : cạnh chung

AD=CD(Vì D là trung điểm của AC)

=> △ADK=△CDK(2 cạnh góc vuông )

=> AK=CK( 2 cạnh tương ứng)

vậy AK=CK

c) Xét △BDk và △EDH có 

BD=DE(giả thiết )

góc BDK=góc EDH(2 góc đối đỉnh)

DK=DH( giả thiết)

=>△BDK =△EDH (c-g-c)

=>gócKBD=góc DEH( 2 góc tương ứng) hay góc CBE =góc BEH mà 2 góc này kà 2 góc so le trong của đường thẳng BE cắt 2 đương thẳng BC và EH

=>BC//EH

Xét △KDC và△HDA có 

AD=DC (Vì D là trung điểm của AC)

góc KDC= góc HDA(2 góc đối đỉnh )

KD=DH (giả thiết)

=>△KDC =△HDA(c-g-c)

=> góc KCD = góc DAH( 2 góc tương ứng) hay góc BCA= góc CAH mà 2 góc này là 2 góc so le trong của đường thẳng AC cắt 2 đường thẳng BC và AH

=>BC //AH

Vì BC//EH

mà  BC//AH => 3 điểm A,H,E thẳng hàng 

Vậy 3 điểm A,H,E thẳng hàng

 

 

 

 

 

 

24 tháng 12 2020

a)Xét △ABD và △CED có 

AD=DC ( vì D là trung điểm của AC)

góc ADB=góc CDE( 2 góc đối đỉnh)

BD=ED ( giả thiết)

=>  △ABD = △CED(c-g-c)

b)ta có KD ⊥AC => góc KDA=góc KDC =90 độ

Xét △ADK (góc KDA=90 độ)và △CDK (góc KDC=90 độ)có 

KD : cạnh chung

AD=CD(Vì D là trung điểm của AC)

=> △ADK=△CDK(2 cạnh góc vuông )

=> AK=CK( 2 cạnh tương ứng)

vậy AK=CK

c) Xét △BDk và △EDH có 

BD=DE(giả thiết )

góc BDK=góc EDH(2 góc đối đỉnh)

DK=DH( giả thiết)

=>△BDK =△EDH (c-g-c)

=>gócKBD=góc DEH( 2 góc tương ứng) hay góc CBE =góc BEH mà 2 góc này kà 2 góc so le trong của đường thẳng BE cắt 2 đương thẳng BC và EH

=>BC//EH

Xét △KDC và△HDA có 

AD=DC (Vì D là trung điểm của AC)

góc KDC= góc HDA(2 góc đối đỉnh )

KD=DH (giả thiết)

=>△KDC =△HDA(c-g-c)

=> góc KCD = góc DAH( 2 góc tương ứng) hay góc BCA= góc CAH mà 2 góc này là 2 góc so le trong của đường thẳng AC cắt 2 đường thẳng BC và AH

=>BC //AH

Vì BC//EH

mà  BC//AH => 3 điểm A,H,E thẳng hàng 

Vậy 3 điểm A,H,E thẳng hàng