K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4:

1/x+1/y+1/z=0

=>(xy+yz+xz)/xyz=0

=>xy+yz+xz+0

=>yz=-xy-xz

x^2+2yz=x^2+yz-xy-xz

=(x-y)(x-z)

Tương tự, ta sẽ có: y^2+2xz=(y-x)(y-z)

z^2+2xy=(z-x)(z-y)

\(A=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(y-x\right)\cdot\left(y-z\right)}+\dfrac{xy}{\left(z-x\right)\left(z-y\right)}\)

\(=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=1\)

Vì bài trên ko có đề nên mik ko thể giúp bạn nha. Sorry nhiều!!!

     Recycle : rubbish, cans, bottles

    Send : postcards, letters, wishes

   help : the homeless, grandparents,mum, the poor

    visit :grandparents, Ha Long Bay

   Play : balling, table tennis

 

10 tháng 1 2022

ko sao , bài trên là chọn từ đánh trọng âm khác với nhữg từ còn lại 

30 tháng 3 2017

=1/2×2/3×3/4×....×49/50

=(1×2×3×4×...×49)/(2×3×4×...×50)

=1/50

Chắc chắn đúng

21 tháng 4 2018

B=(2/2-1/2).(3/3-1/3)...(50/50-1/50)

B=1/2.2/3...49/50

B=1.2.3...49/2.3...50 ;B=1/50

9 tháng 9 2021

\(3,\\ a,\dfrac{\left(1+\sqrt{x}\right)^2-4\sqrt{x}}{1-\sqrt{x}}\\ =\dfrac{\sqrt{x}-2\sqrt{x}+1}{1-\sqrt{x}}=\dfrac{\left(1-\sqrt{x}\right)^2}{1-\sqrt{x}}=1-\sqrt{x}=1-\sqrt{2}\)

\(b,\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{1+\sqrt{xy}}\\ =\dfrac{x+2\sqrt{xy}+y}{1+\sqrt{xy}}=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{1+\sqrt{xy}}\\ =\dfrac{\left(\sqrt{2}+\sqrt{3}\right)^2}{1+\sqrt{6}}=\dfrac{5+2\sqrt{6}}{1+\sqrt{6}}\\ =\dfrac{\left(5+2\sqrt{6}\right)\left(\sqrt{6}-1\right)}{5}\\ =\dfrac{3\sqrt{6}+7}{5}\)

3 tháng 9 2021

46. find

47. horible

48. ưhispered

49. followed

50. full 

3 tháng 9 2021

48 whispered

10 tháng 5 2022

But for his help, the problem wouldn't have been solved

10 tháng 5 2022

But for his help, the problem wouldn't have been solved.

3 tháng 7 2021

7a) \(\Delta=\left(3m+1\right)^2-4\left(2m^2+m-1\right)=m^2+2m+5=\left(m+1\right)^2+4>0\)

\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt 

b) Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=3m+1\\x_1x_2=2m^2+m-1\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2-3x_1x_2=\left(x_1+x_2\right)^2-5x_1x_2=\left(3m+1\right)^2-5\left(2m^2+m-1\right)\)

\(=-m^2+m+6=-\left(m^2-m-6\right)\)

Ta có: \(m^2-m-6=m^2-2.m.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{25}{4}\)

\(=\left(m-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\Rightarrow-\left(m^2-m-6\right)\le\dfrac{25}{4}\)

\(\Rightarrow GTLN=\dfrac{25}{4}\) khi \(m=\dfrac{1}{2}\)

a) Ta có: \(x^2-\left(3m+1\right)x+2m^2+m-1\)

\(\Delta=\left(3m+1\right)^2-4\left(2m^2+m-1\right)\)

\(=9m^2+6m+1-8m^2-4m+4\)

\(=m^2+2m+5\)

\(=\left(m+1\right)^2+4>0\forall m\)

Do đó: Phương trình luôn có hai nghiệm phân biệt với mọi m

b) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=3m+1\\x_1x_2=2m^2+m-1\end{matrix}\right.\)

Ta có: \(B=x_1^2+x_2^2-3x_1x_2\)

\(=\left(x_1+x_2\right)^2-5x_1x_2\)

\(=\left(3m+1\right)^2-5\left(2m^2+m-1\right)\)

\(=9m^2+6m+1-10m^2-5m+5\)

\(=-m^2+m+6\)

\(=-\left(m^2-m-6\right)\)

\(=-\left(m^2-2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{25}{4}\)

\(=-\left(m-\dfrac{1}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall m\)

Dấu '=' xảy ra khi \(m=\dfrac{1}{2}\)

2 tháng 9 2021

hình bé quá

2 tháng 9 2021

sin 650=cos 350
\(cos70^0=sin30^0\)
\(tan80^0=cot20^0\)
\(cot68^0=tan32^0\)