K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có BE là phân giác

nên AB/AE=BC/CE=2

=>AB=2AE

=>tan ABE=1/2

1+tan^2ABE=1/cos^2(ABE)

=>1/cos^2ABE=1+1/4=5/4

=>cos^2ABE=4/5

=>cos ABE=2/căn 5

cos ABC=cos (2*ABE)

\(=2\cdot\left(\dfrac{2}{\sqrt{5}}\right)^2-1=\dfrac{3}{5}\)

=>AB/BC=3/5

=>AB=6cm

=>AC=8cm

 

20 tháng 3 2022

a, Ta có: AB là cạnh đối diện của góc C.

             AC là cạnh đối diện của góc B.

Mà AB>AC, suy ra: 

góc B< góc C.

 Áp dụng Đ. L. py-ta-go vào tg ABC vuông tại A, có:

BC2=AC2+AB2

=>102=62+AB2

=>AB2=102-62

           =100-36

           =64.

20 tháng 9 2021

GIÚP mình thật đầy đủ nhất

Bài 2: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: HB+HC=BC

\(\Leftrightarrow HC\cdot\dfrac{61}{36}=122\)

\(\Leftrightarrow HC=72\left(cm\right)\)

hay HB=50(cm)

24 tháng 4 2017

B A C D E H

Trước khi làm mình có lưu ý là mình sử dụng H luôn cho câu b nhé, dù ở câu c mới xuất hiện.

a/ Xét \(\Delta ABD\)vuông tại \(D\)có:

\(AD^2+BD^2=AB^2\left(pytago\right)\)

\(AD^2+8^2=10^2\)

\(AD^2=10^2-8^2=100-64=36\)

\(\Rightarrow AD=\sqrt{36}=6\left(cm\right)\)

b/ Xét tam giác ABC có 2 đường cao BD;CE cắt nhau tại H => H là trực tâm tam giác ABC

=> AH là đường cao thứ 3 (Vậy thôi đủ xài)

=> AH cũng là đường phân giác vì tam giác ABC cân tại A

Xét \(\Delta AEH\)và \(\Delta ADH\)có:

\(\hept{\begin{cases}AH:chung\\\widehat{EAH}=\widehat{DAH}\left(cmt\right)\\\widehat{AEH}=\widehat{ADH}=90^0\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta AEH=\Delta ADH\left(g.c.g\right)\)

\(\Rightarrow AE=AD\)

Xét \(\Delta AEC\)và \(\Delta ABD\)có:

\(\hept{\begin{cases}AE=AD\left(cmt\right)\\\widehat{AEC}=\widehat{ADB}=90^0\left(gt\right)\\\widehat{BAC}:chung\end{cases}}\)

\(\Rightarrow\Delta AEC=\Delta ADB\left(g.c.g\right)\)

\(\Rightarrow CE=BD\)

c/ (đã chứng minh câu b)

d/ Vì tam giác AEC = tam giác ADB 

=> \(\widehat{ACE}=\widehat{ABD}\)

Mà: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow\widehat{DBC}=\widehat{ECB}\)

\(\Rightarrow\Delta BHC\)cân tại \(H\)

e/ Xét \(\Delta AHD\)vuông tại \(H\)có:

\(AD^2+HD^2=AH^2\left(pytago\right)\)

\(6^2+5^2=AH^2\)(vì 36 + 25 = 61)

\(\Rightarrow AH=\sqrt{61}\approx7,8\left(cm\right)\)

a: Xét ΔABD vuông tại D và ΔCBE vuông tại E có

góc B chung

=>ΔABD đồng dạng với ΔCBE

b: 

ΔABC cân tại A có AD là đường cao

nên D là trung điểm của BC

=>DB=DC=12/2=6cm

=>AD=8cm

ΔABD đồng dạng với ΔCBE

=>BE/BD=AB/CB=AD/CE

=>BE/6=10/12=8/CE

=>BE=5cm; CE=12*8/10=9,6cm

c: Xét ΔCDH vuông tại D và ΔCEB vuông tại E có

góc HCD chung

=>ΔCDH đồng dạng với ΔCEB

=>HD/EB=CD/CE

=>HD/5=6/9,6=5/8

=>HD=25/8cm

19 tháng 2 2020

Ai trả lời giúp mình với mình đang cần gấp

19 tháng 2 2020

a) Vì tam giác ABC cân tại a (GT)
=> góc ABC = góc ACB (ĐL) hay góc EBC = góc DCB (1)
Vì BD vuông góc với AC (GT) => Góc BDC = 90 độ (ĐN) (2)
Vì CE vuông góc với AB (GT) => Góc CEB = 90 độ (ĐN) (3)
Từ (2), (3) => Góc BDC = góc CEB = 90 độ (4)
Xét tam giác BEC và tam giác CDB có :
 Góc BDC = góc CEB = 90 độ (Theo (4))
BC chung
góc EBC = góc DCB (Theo (1))
=> tam giác BEC = tam giác CDB (ch - gn) (5)
=> CE = BD (2 cạnh tương ứng)
b) Từ (5) => BE = CD (2 cạnh tương ứng) (6)
    Từ (5) => Góc BCE = góc CBD (2 góc tương ứng) (7)
Mà góc BCE + góc ACE = góc ACB
      góc CBD + góc ABD = góc ABC
      góc ACB = góc ABC (Theo (1))
Ngoặc '}' 4 điều trên
=> Góc ACE = góc ABD hay góc DCO = góc EBO (8)
Xét tam giác BEO và tam giác CDO có :
Góc BEO = góc CDO = 90 độ (Theo (4))
BE = CD (Theo (6))
Góc EBO = góc DCO (Theo (8))
=> tam giác OEB = tam giác ODC (g.c.g) (9)
c) Từ (9) => OB = OC (2 cạnh tương ứng) (10)
Vì tam giác ABC cân tại A (GT) => AB = AC (ĐN) (11)
Xét tam giác ABO và tam giác ACO có :
AO chung
OB = OC (Theo (10))
AB = AC (Theo (11))
=> tam giác ABO = tam giác ACO (c.c.c)
=> Góc BAO = góc CAO (2 góc tương ứng)
Mà AO nằm giữa BO và CO
=> AO là tia pg của góc BAC (đpcm)
d) Ta có : BE = CD (Theo (6))
Mà BE = 3cm (GT)
=> CD = 3cm (12)
Xét tam giác BCD vuông tại D có :
BD2 + CD2 = BC2 (ĐL pi-ta-go)
Mà CD = 3cm (Theo (12))
      BC = 5cm (GT)
=> BD2 + 32 = 52
=> BD2 + 9   = 25
=> BD2         = 25 - 9
=> BD2         = 16
=> BD2         = \(\sqrt{14}\)   
=> BD           = 4cm
Vậy a)... b)... c)... d)...

5 tháng 3 2022

Theo định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=8cm\)

Vì BE là pg \(\dfrac{AB}{BC}=\dfrac{AE}{EC}\Rightarrow\dfrac{EC}{BC}=\dfrac{AE}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{EC}{BC}=\dfrac{AE}{AB}=\dfrac{AC}{AB+BC}=\dfrac{8}{16}=\dfrac{1}{2}\Rightarrow EC=5cm;AE=3cm\)

 

6 tháng 8 2017

a) cho ac rùi tính ac làm j nữa z bạn 

b)xét tam giác abd vuông tại a và tam giác ebd vuông tại e có 

bd chung 

góc abd = góc ebd ( bd là tia phân giác của góc abc )

=> tam giác abd=tam giac ebd ( ch-gn)

6 tháng 8 2017

c) có tam giác abd = tam giácđeb( ch-gn)

=> ab=eb( 2 cạnh tương ứng )

=> tam giác abe cân tại b ( dhnb tam giác cân )

d)có tam giác abd = tam giácđeb( ch-gn)

=> ad=ed(  2 cạnh tương ứng ) (1)

có tam giác dec vuông tại e

=> ed<dc( dc là cạnh huyền ) (2)

(1)(2)=> ad<dc

24 tháng 3 2023

 

xét ΔABC có AD là đường phân giác 

->\(\dfrac{AB}{BO}=\dfrac{AC}{OC}\)

áp dụng dãy tỉ số bằng nhau ta có

\(\dfrac{AB}{BO}=\dfrac{AC}{OC}=\dfrac{AB+AC}{BO+DO}=\dfrac{AC+AB}{BC}hay\dfrac{6}{BO}=\dfrac{10}{OC}=\dfrac{10+6}{8}=2\)

suy ra: \(BO=\dfrac{6}{2}=3\left(cm\right)\)

             \(CO=\dfrac{10}{2}=5\left(cm\right)\)

O ở đâu vậy bạn?