K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2022

Tham khảo:

 

 

a/ Áp dụng định lí Pytago vào tam giác vu6ong ABC ta được:

AB2=BC2-AC2=102-82=62

=> AB=6 cm.

b/ Xét tam giác ABI và tam giác DBI có:

BI chung

Góc IAB=IDB=90 độ

Góc IBA=IBD(phân giác IB)

=> Tam giác ABI=tam giác DBI(ch-gn)

c/ Gọi O là giao điểm AD và IB.

Vì tam giác ABI=tam giác DBI(câu b)

=> AB=BD(cạnh tương ứng)

Xét tam giác OBA và tam giác OBD có:

BO chung

Góc OBD=OBA(phân giác BI)

AB=BD(cmt)

=> Tam giác OBA=tam giác OBD(c-g-c)

=> OA=OD(cạnh tương ứng) và Góc AOB=DOB=180/2=90 độ

=> BI là đường trung trực của AD.

d/ Xét tam giác IAE và tam giác IDC có:

Góc AIE=DIC(đối đỉnh)

Góc IAE=IDC=90 độ

IA=ID(cạnh tương ứng của tam giác ABI=tam giác DBI)

=> Tam giác IAE=tam giác IDC(g-c-g)

=> AE=DC(cạnh tương ứng)

Mà AB=BD

=> BE=BC hay Tam giác BEC cân tại B

=> Góc BDA=BCE và 2 góc đó ở vị trí đồng vị nên AD//EC

Mà BI vuông góc với AD nên BI cũng vuông góc với EC.

Gọi N là giao điểm của BI và EC.

9 tháng 5 2022

tôi ko biết

15 tháng 5 2016

A C B I D E

15 tháng 5 2016

a/ Áp dụng định lí Pytago vào tam giác vu6ong ABC ta được:

AB2=BC2-AC2=102-82=62

=> AB=6 cm.

b/ Xét tam giác ABI và tam giác DBI có:

BI chung

Góc IAB=IDB=90 độ

Góc IBA=IBD(phân giác IB)

=> Tam giác ABI=tam giác DBI(ch-gn)

c/ Gọi O là giao điểm AD và IB.

Vì tam giác ABI=tam giác DBI(câu b)

=> AB=BD(cạnh tương ứng)

Xét tam giác OBA và tam giác OBD có:

BO chung

Góc OBD=OBA(phân giác BI)

AB=BD(cmt)

=> Tam giác OBA=tam giác OBD(c-g-c)

=> OA=OD(cạnh tương ứng) và Góc AOB=DOB=180/2=90 độ

=> BI là đường trung trực của AD.

d/ Xét tam giác IAE và tam giác IDC có:

Góc AIE=DIC(đối đỉnh)

Góc IAE=IDC=90 độ

IA=ID(cạnh tương ứng của tam giác ABI=tam giác DBI)

=> Tam giác IAE=tam giác IDC(g-c-g)

=> AE=DC(cạnh tương ứng)

Mà AB=BD

=> BE=BC hay Tam giác BEC cân tại B

=> Góc BDA=BCE và 2 góc đó ở vị trí đồng vị nên AD//EC

Mà BI vuông góc với AD nên BI cũng vuông góc với EC.

Gọi N là giao điểm của BI và EC.

a: AB=căn 10^2-8^2=6cm

b: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có

BI chung

góc ABI=góc DBI

=>ΔBAI=ΔBDI

c: ΔBAI=ΔBDI

=>BA=BD và ID=IA

=>BI là trung trực của AD

d: Xét ΔBEC có

ED,CA là đường cao

ED cắt CA tại I

=>I là trực tâm

=>BI vuông góc EC

15 tháng 5 2016

tam giác ABC , góc A = 90 độ

=> AB+ AC= BC( định lí Pi-ta-go)

=> AB= 102  - 82  = 36

=> AB = 6

xét tam giác AIB và tam giác DIB có:

góc A = góc D (= 90 độ)

góc ABI = góc DBI ( BI là phan giác )

=> tam giác ABI = tam giác DBI ( cạnh huyền - góc nhọn) (*)

gọi Bi giao AD = N

(*) => BA =BD (1)

tam giác BAN = tam giác BDN ( c.g.c)

=> góc BNA = góc BND ; AN = ND => BI là trung trực

(*)=> AI = ID => tam giác AID cân tại I => góc DAI = góc ADI

Tam giác ADE = tam giác ADC ( g.c.g) => AE =  DC (2)

từ (1) và (2) => BE = BC 

BI giao EC = M

tam giác BEM = tam Giác BCM (c.g.c) => góc BME = góc BMC

=> BI vuông góc EC.

a: Xét ΔAIB vuông tại A và ΔDIB vuông tại D có 

IB chung

\(\widehat{ABI}=\widehat{DBI}\)

Do đó: ΔAIB=ΔDIB

b: Ta có: ΔAIB=ΔDIB

nên AI=DI; BA=BD

Ta có: IA=ID

nên I nằm trên đường trung trực của AD(1)

Ta có: BA=BD

nên B nằm trên dường trung trực của AD(2)

Từ (1) và (2) suy ra BI⊥AD

c:Xét ΔAIE vuông tại A và ΔDIC vuông tại D có

IA=ID

\(\widehat{AIE}=\widehat{DIC}\)

Do đó: ΔAIE=ΔDIC

Suy ra: AE=DC

Xét ΔBEC có

BA/AE=BD/DC

nên AD//EC

d: Xét ΔIEC có IE=IC

nên ΔIEC cân tại I

26 tháng 5 2021

undefined

CHÚC EM HỌC TỐT NHAok

31 tháng 5 2021

ai help mik bài này đc ko

 

31 tháng 5 2021

a) ΔABC vuông tại A 

Áp dụng định lý Pi-ta-go ta có: 

BC2 = AC2+AB2

⇒BC2-AC2=AB2

⇒100-64=AB2

⇒36=AB

⇒AB=6(cm)

b) Xét ΔAIB và ΔDIB có:

góc BAI = góc BDI (= 90 độ)

Chung IB

góc IBA = góc IBD (gt)

⇒ ΔAIB = ΔDIB (ch-gn)

⇒ BA = BD (2 cạnh tương ứng)

c)  Gọi giao BI và AD là F

Xét ΔABF và ΔDBF có:

AB = DB (cmb)

góc ABF = góc DBF (gt)

chung BF

⇒ ΔABF = ΔDBF (c.g.c)

⇒ FA = FD (2 cạnh tương ứng)

góc BFA = góc BFD (2 góc tương ứng) mà góc góc này kề bù nên góc BFA = góc BFD = 90 độ ⇒ BF⊥AD

Vì FA = FD, BF⊥AD ⇒ BI là đường trung trực của AD

d) Gọi giao của BI và EC là G

Xét ΔEBC có: CA⊥BE, ED⊥BC nên I là trọng tâm của ΔEBC nên BG là đường cao thứ 3 của ΔEBC ⇒ BG⊥EC ⇒ BI⊥EC

 

a: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có

BI chung

góc ABI=góc DBI

=>ΔBAI=ΔBDI

b: ΔBAI=ΔBDI

=>BA=BD và IA=ID

=>BI là trung trực của AD

1 a, so sánh ABC và ACB . tính góc ABHa, so sánh ABC và ACB . tính góc ABHb, vẽ AD là p.g củcho tam giác ABC có góc A =600 , AB < AC , đường cao BH [ H thuộc AC]a góc A [ D thuộc BC] , vẽ BI vuông góc AD  tại  I . chứng minh tam giác AIB =tam giác BHAc, tia BI cắt AC ở E . chứng minh  tam giác ABE đều d, chứng minh  DC >DB2 TAM GIÁC ABC  VUÔNG TẠI A ĐƯỜNG PHÂN GIÁC BD . KẺ AE VUÔNG BD , AE CẮT BC Ở Ka, BIẾT AC = 8cm AB=6cm ....
Đọc tiếp

1 a, so sánh ABC và ACB . tính góc ABHa, so sánh ABC và ACB . tính góc ABH
b, vẽ AD là p.g củcho tam giác ABC có góc A =600 , AB < AC , đường cao BH [ H thuộc AC]a góc A [ D thuộc BC] , vẽ BI vuông góc AD  tại  I . chứng minh tam giác AIB =tam giác BHA

c, tia BI cắt AC ở E . chứng minh  tam giác ABE đều 

d, chứng minh  DC >DB

2

 TAM GIÁC ABC  VUÔNG TẠI A ĐƯỜNG PHÂN GIÁC BD . KẺ AE VUÔNG BD , AE CẮT BC Ở K

a, BIẾT AC = 8cm AB=6cm . TÍNH BC 

b, TAM GIÁC ABK LÀ TAM GIÁC GÌ

c, CHỨNG MINH DK VUÔNG BC .

d, KẺ AE VUÔNG BC. CHỨNG MINH AK LÀ TIA PHÂN GIÁC  CỦA GÓC HAC

3

 CHO TAM ABC CÓ AB=3cm AC=4cm BC=5cm

a, TAM GIÁC ABC LÀ TAM GIÁC GÌ

b, VẼ BD LÀ PHÂN GIÁC CỦA GÓC B. TRÊN CẠNH BC LẤY DIỂM ED TẠI F. CHỨNG MINH AE SONG SONG FC

c, CHỨNG MINH TAM GIÁC ABH = TAM GIÁC ACH


b, vẽ AD là p.g củcho tam giác ABC có góc A =600 , AB < AC , đường cao BH [ H thuộc AC]a góc A [ D thuộc BC] , vẽ BI vuông góc AD  tại  I . chứng minh tam giác AIB =tam giác BHA

c, tia BI cắt AC ở E . chứng minh  tam giác ABE đều 

d, chứng minh  DC >DB

 

GIÚP MIK LÀM 3 BÀI NÀY NHA MÌNH CẢM ƠN

0