K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: m>n

=>2m>2n

=>2m-2>2n-2

b: m>n

=>-3m<-3n

=>-3m+1<-3n+1

c: m>n

=>2m>2n

=>2m+3>2n+3

mà 2n+3>2n+1

nên 2m+3>2n+1

d: m>n

=>-5m<-5n

=>-5m+3<-5n+3

mà -5n+3<-5n+7

nên -5m+3<-5n+7

13 tháng 5 2022

`a)`

  `m > n`

`<=>2m > 2n`

`<=>2m+3 > 2n+3`

Vậy `2n+3 < 2m+3`

_________________________

`b)`

   `m > n`

`<=>-m < -n`

`<=>-m-5 < -n-5`

Vậy `-n-5 > -m-5`

13 tháng 5 2022

a)\(m>n\Rightarrow2m>2n\Rightarrow2m+3>2n+2\)

b)\(m>n\Rightarrow-m< -n\Rightarrow-m-5< -n-5\)

19 tháng 8 2020

Bài 1.

2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2nn + 6n

= 6n \(⋮6\forall n\inℤ\)( đpcm )

Bài 2.

P = ( m2 - 2m + 4 )( m + 2 ) - m3 + ( m + 3 )( m - 3 ) - m2 - 18

P = m3 + 8 - m3 + m2 - 9 - m2 - 18

P = 8 - 9 - 18 = -19

=> P không phụ thuộc vào biến M ( đpcm )

12 tháng 11 2021

b: Vì 12n+1 là số lẻ

và 30n+2 là số chẵn

nên 12n+1/30n+2 là phân số tối giản

25 tháng 11 2019

a) <      b) >      c) >      d) <

a: \(n^3-2⋮n-2\)

=>\(n^3-8+6⋮n-2\)

=>\(6⋮n-2\)

=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

b: \(n^3-3n^2-3n-1⋮n^2+n+1\)

=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

=>\(3⋮n^2+n+1\)

=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)

mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)

nên \(n^2+n+1\in\left\{1;3\right\}\)

=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)

18 tháng 7 2018

a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6

b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1 

= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1

= 6n - 6n^2 chia hết 6

c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18

= - 19

18 tháng 7 2018

Bài 1:

\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n\left(n^2+n-n^2-n+3\right)\)

\(=6n\)\(⋮\)\(6\)
Bài 2:

\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)

\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)

\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)

Bài 3:

\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)

\(=m^3+8-m^3+m^2-9-m^2-18\)

\(=-19\)

\(\Rightarrow\)đpcm