Bài 3 : Cho tam giác ABC vuông tại A và góc B lớn hơn góc C . Vẽ phân giác góc B cắt cạnh AC tại D , vẽ DE song song với BC ( E thuộc cạnh AB ) a) Chứng minh rằng tam giác BDE là tam giác cân b) Vẽ phân giác góc BDC cắt BC tại F , so sánh hai độ dài DF và CF c) Khi cho thêm điều kiện 0 C = 30 , hãy c/m tam giác ABF đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : góc ABD = DBC ( 1 ) ( BD là tia phân giác của góc ABC )
Ta lại có : BC // BE
=> Góc CBD = EDB ( 2 ) ( SLT )
Từ ( 1 ) , ( 2 ) suy ra Góc ABD = EDB
Hay EBD cân tại E
b) Ta có : góc FDC = ABC ( tự chứng minh )
Mà góc ABC > BCA ( gt )
Do đó : Góc FDC > BCA
=> FC < FD
( Quan hệ giữa góc và cạnh đối diện )
a: Xét ΔABC có DE//BC
nên AD/AB=AE/AC
mà AB=AC
nên AD=AE
hay ΔADE cân tại A
b: Xét ΔMBD vuông tại M và ΔNCE vuông tại N có
BD=CE
\(\widehat{BDM}=\widehat{CEN}\)
Do đó: ΔMBD=ΔNCE
c: Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
d: Ta có: IB=IC
nên I nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AI là đường trung trực của BC
Ta có: ΔABC cân tại A
mà AI là đường trung trực
nên AI là tia phân giác của góc BAC
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE và góc BED=góc BAD=90 độ
b; AH vuông góc BC
DE vuông góc BC
=>AH//DE
a: Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
c: Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE và AB=AC
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
=>\(\widehat{DCB}=\widehat{EBC}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của góc BAC