Chứng minh đẳng thức :
\(\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+zx\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]\)
\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(x+y\right).z-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yx-3xz-3yz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
=> \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz\)
(x+y+z)^2-x^2-y^2-z^2=2
=x^2+y^2+z^2+2xy+2yz+2xz-x^2-y^2-z^2
=2xy+2yz+2xz=2(xy+yz+xz) (đpcm)
(x+y+z)2-x2-y2-z2=2(xy+yz+zx)
x2+y2+z2+2xy+2yz+2zx-x2-y2-z2=2(xy+yz+zx)
\(\Rightarrow\)2xy+2yz+2zx=2(xy+yz+zx)
\(\Rightarrow\)2(xy+yz+zx)=2(xy+yz+zx)
vậy (x+y+z)2-x2-y2-z2=2(xy+yz+zx)
hùi nãy mem nào k sai cho t T_T t buồn
\(VT\ge6\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-2\left(xy+yz+zx\right)+2.\frac{9}{4\left(x+y+z\right)}\)
\(=6\left(x+y+z\right)^2-2.\frac{\left(x+y+z\right)^2}{3}+\frac{9}{2\left(x+y+z\right)}=6.\left(\frac{3}{4}\right)^2-2.\frac{\left(\frac{3}{4}\right)^2}{3}+\frac{9}{2.\frac{3}{4}}\)
\(=\frac{27}{8}-\frac{3}{8}+6=9\)
\(\Rightarrow\)\(VT\ge9\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)
Chúc bạn học tốt ~
Lời giải:
$P=(xy+yz+xz)^2+(x^2-yz)^2+(y^2-zx)^2+(z^2-xy)^2$
$=x^2y^2+y^2z^2+z^2x^2+2x^2yz+2xy^2z+2xyz^2+x^4+y^2z^2-2x^2yz+y^4+z^2x^2-2xzy^2+z^4+x^2y^2-2xyz^2$
$=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2$
$=(x^2+y^2+z^2)^2=10^2=100$
`@ x+y+z=1`.
`<=>` \(\left\{{}\begin{matrix}x=1-y-z\\y=1-z-x\\z=1-x-y\end{matrix}\right.\)
`P=(x+y)^2/(xy+1-x-y).(y+z)^2/(yz-y-z+1).(x+z)^2/(xy-x-y+1)`.
`<=> ((1-z)^2(1-y)^2(1-x)^2)/((1-x)(1-y)(1-y)(1-z)(1-z)(1-x).`
`=1.`
Vậy `P` không phụ thuộc vào giá trị của biến.
1111111111111111111
\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)
Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)
Là xong.
\(VP=\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=x^2+2xy+2xz+y^2+2yz+z^2-x^2-y^2-z^2\)
\(=2xy+2yz+2xz=2\left(xy+yz+xz\right)=VP\)
Suy ra điều phải chứng minh
Có: \(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=x^2+y^2+z^2+2xy+2yz+2xz-x^2-y^2-z^2\)
\(=2xy+2yz+2xz\)
\(=2\left(xy+yz+xz\right)\)
\(\left[\left(x+y\right)+z\right]^2=\left[\left(x+y\right)^2+2.\left(x+y\right)z+z^2\right]=x^2+2xy+y^2+2xz+2yz+z^2\)\(+z^2\)
Thay vào: x^2+y^2+z^2+ 2xy+2yz+2xz - x^2 - y^2 - z^2= 2(xy+yz+xz) (đpcm)