K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

em hồng biết

21 tháng 9 2016

chúc mừng chị dung

20 tháng 9 2016

Ta có: \(\hept{\begin{cases}4k\equiv-1\left(modp\right)\\4k-1\equiv-2\left(modp\right)\end{cases}}\)

\(\Rightarrow\left(4k\right)!\equiv\left[\left(2k\right)!\right]^2\left(modp\right)\)

Theo định lý Wilson kết hợp với định lý Fecma nhỏ ta có:

Với \(n=4k\left(2k\right)!\) thì:

\(2^n-1\left[2^{\left(2k\right)!}\right]^{4k}-1\equiv0\left(modp\right)\)

\(\Rightarrow n^2+2^n=\left[4k.\left(2k\right)!\right]^2+2^{4k\left(2k\right)!}\equiv0\left(modp\right)\)

\(\Rightarrow\) Có vô số giá trị của \(n\) thỏa mãn.

20 tháng 9 2016

Viết rõ đề ra đc không?

22 tháng 9 2016

theo tớ thì có đó 

 bạn thử tìm coi

    Đ/s : có  tồn tại n thỏa mãn điều kiện 

21 tháng 9 2016

Hình như là xét trường hợp

21 tháng 9 2016

"Hình như". KHông biết làm thi thôi bày đặt quá má hiha

25 tháng 11 2016

n^2= (2k+1)^2=4k^2+4k+1

k=2t=> 16t^2+8t+1  chia 8 luon du 1

k=(2t+1)=> 4(4t^2+4t+1) +4(2t+1)+1=16t^2+24t+8+1 chia 8 du 1

ket luan:  so du n^2 chia 8 luon du 1

a^2+b^2-c^2=2016=2^3.3^2.23

4m^2+4m+4n^2+4n-4p^2-4p+2=2016

2(m^2+m+n^2+n-p^2-p)+1=1008 => khong ton tai 

VP chan VT luon le

25 tháng 11 2016

bài này khó quá, tớ làm được nhưng dài lắm

25 tháng 11 2021

A chắc

25 tháng 11 2021

mình nghĩ là......A

3 tháng 10 2015

n=1