\(\exists\)hay không số tự nhiên \(n\)thỏa mãn \(n^2+2^n=B\left(1994\right)?\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}4k\equiv-1\left(modp\right)\\4k-1\equiv-2\left(modp\right)\end{cases}}\)
\(\Rightarrow\left(4k\right)!\equiv\left[\left(2k\right)!\right]^2\left(modp\right)\)
Theo định lý Wilson kết hợp với định lý Fecma nhỏ ta có:
Với \(n=4k\left(2k\right)!\) thì:
\(2^n-1\left[2^{\left(2k\right)!}\right]^{4k}-1\equiv0\left(modp\right)\)
\(\Rightarrow n^2+2^n=\left[4k.\left(2k\right)!\right]^2+2^{4k\left(2k\right)!}\equiv0\left(modp\right)\)
\(\Rightarrow\) Có vô số giá trị của \(n\) thỏa mãn.
n^2= (2k+1)^2=4k^2+4k+1
k=2t=> 16t^2+8t+1 chia 8 luon du 1
k=(2t+1)=> 4(4t^2+4t+1) +4(2t+1)+1=16t^2+24t+8+1 chia 8 du 1
ket luan: so du n^2 chia 8 luon du 1
a^2+b^2-c^2=2016=2^3.3^2.23
4m^2+4m+4n^2+4n-4p^2-4p+2=2016
2(m^2+m+n^2+n-p^2-p)+1=1008 => khong ton tai
VP chan VT luon le
em hồng biết
chúc mừng chị dung