Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{6}xy^{7-n+2}z^{n-3}-x^{n-2-4}y^{8-n+2}\)
\(=\dfrac{1}{6}xy^{9-n}z^{n-3}-x^{n-6}y^{10-n}\)
Để đây là phép chia hết thì 9-n>=0 và n-3>=0 và n-6>=0 và 10-n>=0
=>n<=9 và n>=6
=>n thuộc {6;7;8;9}
ĐK \(n\ge0\)
Ta có \(3.3^{n-1}\left(6.3^{n+2}+3\right)-2.3^n\left(3^{n+3}-1\right)=405\)
\(\Leftrightarrow3^n\left(6.9.3^n+3\right)-2.3^n\left(27.3^n-1\right)=405\)
\(\Leftrightarrow54.3^{2n}+3.3^n-54.3^{2n}+2.3^n=405\Leftrightarrow5.3^n=405\)
\(\Leftrightarrow3^n=81=3^4\Leftrightarrow n=4\left(tm\right)\)
Vậy \(n=4\)
Thanks nhưng ko cần tag, mình là người phàm trần, ko quan tâm mấy thứ trên trời thế này :)
\(\left(xy+yz+zx\right)\left[\frac{1}{\left(kx+y\right)^2}+\frac{1}{\left(ky+z\right)^2}+\frac{1}{\left(kz+x\right)^2}\right]\ge\frac{9}{\left(k+1\right)^2}\).
Ta sẽ chứng minh bất đẳng thức sau:
\(\frac{1}{\left(kx+y\right)^2}+\frac{1}{\left(ky+z\right)^2}+\frac{1}{\left(kz+x\right)^2}\ge\frac{2}{\left(ky+z\right)\left(kz+x\right)}+\frac{1}{\left(k+1\right)^2xy}\)
Không mất tính tổng quát, giả sử \(x\ge y\ge z\ge0\).
Thật vậy, ta có: \(\left\{{}\begin{matrix}\left(kx+y\right)^2\ge\left(kx+z\right)^2\\\left(k+1\right)^2.xy\ge\left(k+1\right)^2.y^2=\left(ky+y\right)^2\ge\left(ky+z\right)^2\end{matrix}\right.\)
\(\Rightarrow\frac{\left(kx-y\right)^2}{\left(kx+z\right)^2\left(ky+z\right)^2}\ge\frac{\left(kx-y\right)^2}{\left(k+1\right)^2.xy\left(kx+y\right)^2}\)
\(\Leftrightarrow\frac{1}{\left(ky+z\right)^2}+\frac{1}{\left(kx+z\right)^2}-\frac{2}{\left(ky+z\right)\left(kx+z\right)}\ge\frac{1}{\left(k+1\right)^2.xy}-\frac{1}{\left(kx+y\right)^2}\)
\(\Leftrightarrow\frac{1}{\left(kx+y\right)^2}+\frac{1}{\left(kx+z\right)^2}+\frac{1}{\left(ky+z\right)^2}\ge\frac{2}{\left(kx+z\right)\left(ky+z\right)}+\frac{1}{\left(k+1\right)^2.xy}\)
(điều phải chứng minh).
Bây giờ ta sẽ chứng minh tiếp \(\left(xy+yz+xz\right)\left[\frac{2}{\left(kx+z\right)\left(ky+z\right)}+\frac{1}{\left(k+1\right)^2.xy}\right]\ge\frac{9}{\left(k+1\right)^2}\)
Ta có: \(\frac{xy+yz+zx}{\left(k+1\right)^2.xy}=\frac{1}{\left(k+1\right)^2}+\frac{z\left(x+y\right)}{\left(k+1\right)^2.xy}\)
và \(\frac{2\left(xy+yz+zx\right)}{\left(kx+z\right)\left(ky+z\right)}=2-\frac{2z^2}{\left(kx+z\right)\left(ky+z\right)}\)
Cộng hai vế trên lại, bất đẳng thức cần chứng minh tương đương:
\(\frac{z\left(kx+y\right)}{\left(k+1\right)^2.xy}\ge\frac{2z^2}{\left(ky+z\right)\left(kx+z\right)}\)
\(\Leftrightarrow\left(kx+y\right)\left(ky+z\right)\left(kx+z\right)\ge2\left(k+1\right)^2.xyz\) luôn đúng (bất đẳng thức AM-GM).
Ta đã chứng minh được bất đẳng thức trên.
Ta có: \(\hept{\begin{cases}4k\equiv-1\left(modp\right)\\4k-1\equiv-2\left(modp\right)\end{cases}}\)
\(\Rightarrow\left(4k\right)!\equiv\left[\left(2k\right)!\right]^2\left(modp\right)\)
Theo định lý Wilson kết hợp với định lý Fecma nhỏ ta có:
Với \(n=4k\left(2k\right)!\) thì:
\(2^n-1\left[2^{\left(2k\right)!}\right]^{4k}-1\equiv0\left(modp\right)\)
\(\Rightarrow n^2+2^n=\left[4k.\left(2k\right)!\right]^2+2^{4k\left(2k\right)!}\equiv0\left(modp\right)\)
\(\Rightarrow\) Có vô số giá trị của \(n\) thỏa mãn.
Viết rõ đề ra đc không?