Giải và trình bày câu này giúp em với ạ:
Sử dụng máy tính bỏ túi FX 570 và các kỹ năng cần thiết để tìm nghiệm dưới dạng phân số của pt sau:
\(2x^2-x+\sqrt{2-x^2}=\frac{7}{2}+\sqrt{2-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhập PT vào máy tính, sử dụng dầu "=" ô nút CALC.
sau khi nhập xong, nhấn SHIFT,CALC, rồi nhấn dấu =
Ta được x=-1,322875656
1.
\(2x+1\ge0\Rightarrow x\ge-\dfrac{1}{2}\)
Khi đó pt đã cho tương đương:
\(x^2+2x+2m=\left(2x+1\right)^2\)
\(\Leftrightarrow x^2+2x+2m=4x^2+4x+1\)
\(\Leftrightarrow3x^2+2x+1=2m\)
Xét hàm \(f\left(x\right)=3x^2+2x+1\) trên \([-\dfrac{1}{2};+\infty)\)
\(-\dfrac{b}{2a}=-\dfrac{1}{3}< -\dfrac{1}{2}\)
\(f\left(-\dfrac{1}{2}\right)=\dfrac{3}{4}\) ; \(f\left(\dfrac{1}{3}\right)=\dfrac{2}{3}\)
\(\Rightarrow\) Pt đã cho có 2 nghiệm pb khi và chỉ khi \(\dfrac{2}{3}< 2m\le\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{3}< m\le\dfrac{3}{8}\)
\(\Rightarrow P=\dfrac{1}{8}\)
3.
Đặt \(x^2=t\ge0\Rightarrow\left[{}\begin{matrix}x=\sqrt{t}\\x=-\sqrt{t}\end{matrix}\right.\)
Pt trở thành: \(t^2-3mt+m^2+1=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=9m^2-4\left(m^2+1\right)>0\\t_1+t_2=3m>0\\t_1t_2=m^2+1>0\end{matrix}\right.\) \(\Rightarrow m>\dfrac{2}{\sqrt{5}}\)
Ta có:
\(M=x_1+x_2+x_3+x_4+x_1x_2x_3x_4\)
\(=-\sqrt{t_1}-\sqrt{t_2}+\sqrt{t_1}+\sqrt{t_2}+\left(-\sqrt{t_1}\right)\left(-\sqrt{t_2}\right)\sqrt{t_1}.\sqrt{t_2}\)
\(=t_1t_2=m^2+1\) với \(m>\dfrac{2}{\sqrt{5}}\)
a) Chia cả 2 vế cho 2 ta được : \(x=\dfrac{\sqrt{13}}{2}\approx1,803\)
b) Chia cả 2 vế cho -5 ta được : \(x=\dfrac{1+\sqrt{5}}{-5}\approx-0,647\)
c) Chia cả 2 vế cho \(\sqrt{2}\) ta được: \(x=\dfrac{4\sqrt{3}}{\sqrt{2}}\approx4,889\)
Điều kiện có 2 nghiệm phân biệt tự làm nha
Theo vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=5\\x_1.x_2=m-2\end{cases}}\)
\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)
\(\Leftrightarrow4\left(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1.x_2}}\right)=9\)
\(\Leftrightarrow4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)
Làm nốt nhé
Câu 1:
M=\(\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1+\left(4x^2-4x+1\right)+2014\)
=\(\left(\left(x+y\right)^2+2\left(x+y\right)+1\right)+\left(2x-1\right)^2+2014\)
=\(\left(x+y+1\right)^2+\left(2x-1\right)^2+2014\ge2014\)
\(\Rightarrow M\ge2014\Leftrightarrow minM=2014\)
\(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\2x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,5\\y=1,5\end{cases}}\)
Câu 2:
ĐKXĐ \(\hept{\begin{cases}x\ge0\\x-1\ne0\\x+2\sqrt{x}+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\\\left(\sqrt{x}+1\right)^2\ne0\end{cases}}\)
\(Q=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\left(x+\sqrt{x}\right)\)
\(=\left[\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\sqrt{x}\left(\sqrt{x}+1\right)\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)
\(=\frac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\sqrt{x}=\frac{2x}{x-1}\)
( 3 - x 5 )(2x 2 + 1) = 0 ⇔ 3 - x 5 = 0 hoặc 2x 2 + 1 = 0
3 - x 5 = 0 ⇔ x = 3 / 5 ≈ 0,775
2x 2 + 1 = 0 ⇔ x = - 1/2 2 ≈ - 0,354
Phương trình có nghiệm x = 0,775 hoặc x = - 0,354
Coi như bước trên bạn đã làm đúng, giải pt vô tỉ thôi nhé:
TH1: \(x=y\)
\(\Rightarrow x^2+x+2=\sqrt{5x+5}+\sqrt{3x+2}\)
\(\Leftrightarrow x^2-x-1+\left(x+1-\sqrt{3x+2}\right)+\left(x+2-\sqrt{5x+5}\right)=0\)
\(\Leftrightarrow x^2-x-1+\dfrac{x^2-x-1}{x+1+\sqrt{3x+2}}+\dfrac{x^2-x-1}{x+2+\sqrt{5x+5}}=0\)
TH2: \(x=4y+3\)
Đây là trường hợp nghiệm ngoại lai, lẽ ra phải loại (khi bình phương lần 2 phương trình đầu, bạn quên điều kiện nên ko loại trường hợp này)
Dạ em cảm ơn thầy ạ, em ko nhìn ra cách chuyển thành x2 - x - 1 ạ @@
em ko biết làm
hi hi
ĐKXĐ: \(\sqrt{2}\le x\le\sqrt{2}\)
Ta có : \(2x^2-x+\sqrt{2-x^2}=\frac{7}{2}+\sqrt{2-x}\)
\(\Leftrightarrow4x^2-2x+2\sqrt{2-x^2}=7+2\sqrt{2-x}\)
\(\Leftrightarrow-4\left(2-x^2\right)+2\left(2-x\right)+2\sqrt{2-x^2}-2\sqrt{2-x}-3=0\)
Đặt \(a=\sqrt{2-x^2}\) , \(b=\sqrt{2-x}\) , pt trở thành :
\(-4a^2+2b^2+2a-2b-3=0\)
Tới đây bạn lập ĐENTA rồi tìm mối liên hệ giữa a và b, từ đó suy được pt mới ẩn x.
Vì được dùng máy tính nên bạn tự tìm nghiệm nhé :)