Chứng minh tích của 2 n thừa số tự nhiên x là số chính phương
Đây là toán lớp 6 mọi người giúp cháu với cháu đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này chủ yếu suy luận thôi, con tôi giờ mới học lớp 2 nên giờ mới gặp
"lớn hơn 2 số hạng đầu là 30" như vậy số hạng thứ 3 là 30
vì 2 số hạng đầu bằng bao nhiêu đi chăng nữa mình không cần quan tâm khi cộng thêm 30 thì vẫn bằng 30
Giải thích như sau: (a +b) +c = (a + b) + 30 => c=30 (giải thích theo kiểu người lớn)
Giải thích với trẻ lớp 2 các bạn cần khéo hơn 1 tý "với tính chất của phép cộng" nếu mà phép nhân thì lớp 2 không làm được
Phân tích thành tích các thừa số nguyên tố: \(n=p_1^{a_1}p_2^{a_2}...p_n^{a_n}\).
Số ước tự nhiên của nó là: \(\left(a_1+1\right)\left(a_2+1\right)...\left(a_n+1\right)\).
\(n\)là số chính phương \(\Leftrightarrow\)\(a_1,a_2,...,a_n\)là các số chẵn
\(\Leftrightarrow a_1+1,a_2+1,...,a_n+1\)là các số lẻ
\(\Leftrightarrow\left(a_1+1\right)\left(a_2+1\right)...\left(a_n+1\right)\)là số lẻ.
Ta có đpcm.
Ta có
kết quả là:
Nếu n + 3 là số chẵn
=> ( n + 3 ) ( n + 6 ) chia hết cho 2
Nếu n + 6 là số chẵn
=> ( n + 3 ) ( n + 6 ) chia hết cho 2
Nếu n+3 là số chẵn thì\(\Rightarrow\)(n+3)(n+6) chia hết cho 2
Nếu n+6 là số chẵn thì (n+3)(n+6) chia hết cho 2
tk tôi nha
Lời giải:
Đặt $n+1=a^2$ và $2n+1=b^2$ với $a,b$ là số tự nhiên.
Vì $2n+1$ lẻ nên $b^2$ lẻ. SCP lẻ chia $4$ dư $1$ nên $2n+1$ chia $4$ dư $1$
$\Rightarrow 2n\vdots 4$
$\Rightarrow n\vdots 2$
$\Rightarrow n+1=a^2$ lẻ. Ta biết SCP lẻ chia $8$ dư $1$ nên $n+1=a^2$ chia $8$ dư $1$
$\Rightarrow n\vdots 8(1)$
Mặt khác:
Nếu $n$ chia 3 dư $1$ thì $n+1$ chia $3$ dư $2$ (vô lý vì 1 SCP chia 3 dư 0 hoặc 1)
Nếu $n$ chia $3$ dư $2$ thì $2n+1$ chia $3$ dư $2$ (cũng vô lý)
Do đó $n$ chia hết cho $3(2)$
Từ $(1);(2)$ mà $(3,8)=1$ nên $n\vdots 24$ (đpcm)
Gọi d là ƯCLN (21n+4;14n+3)
\(\Rightarrow21n+4⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow42n+8⋮d\)
\(\Rightarrow14n+3⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow42n+9⋮d\)
\(\Leftrightarrow\left(42n+9\right)-\left(42n+8\right)=1⋮d\Rightarrow d=1\)
\(\RightarrowƯCLN\left(21n+4;14n+3\right)=1\)
\(\Rightarrow\frac{21n+4}{14n+3}\)tối giản
Vậy: Với mọi số tự nhiên n thì \(\frac{21n+4}{14n+3}\) tối giản
k cho mình với: xem trong quyển nâng cao phát triển toán 6