K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2019

a= [n(n+3][(n+1)(n+2)]+1

a=[n^2+3n][n^2+3n+2]+1

ĐẶt n^2+3n+1=b( b thuộc Z)

=> a=(b-1)(b+1)+1

=> a=b^2-1+1

=> a=b^2

=> a=(n^2+3n+1)^2

Mà n là số tự nhiên =>  n^2+3n+1 là số nguyên => a là số chính phương

T i ck nha

a=n(n+1)(n+2)(n+3)+1

=(n2+3n)(n2+3n+2)+1

Đặt n2+3n+1=m(m thuộc N*)

=>a= (m-1)(m+1)+1=m2

Vậy...................

18 tháng 9 2016

k cho mình với: xem trong quyển nâng cao phát triển toán 6

19 tháng 12 2019

a) Ta có: \(n+1\inƯ\left(5\right)\)

\(\Rightarrow n+1\in\left\{1;5\right\}\)

\(\Rightarrow n\in\left\{0;4\right\}\)

_Học tốt_

19 tháng 12 2019

2n+ 5 là số lẻ mà bọi của 4 là số chẵn 

vậy ước của 2n + 1 và 2n + 5 không là 4 với mọi n thuộc N

học tốt

12 tháng 1 2017

xét x<4 và x>3

nếu x<4 thì: +Với x=1 thì x!+2003=2004 (loại vì ko là scp)

                 +Với x=2 thì x!+2003=2005 (loại vì ko là scp)

                 +Với x=3 thì x!+2003=2009 (loại vì ko là scp)

nếu x>3 thì x! sẽ chia hết cho 3                (1)

Mặt khác 2003 chia 3 dư 2             (2)

Từ (1) và (2) suy ra: x!+2003 chia 3 dư 2 

Mà scp khi chia cho 3 ko có số dư là 2

=> x!+2003 ko là scp

Vậy ......................

14 tháng 12 2017


Theo mình nghĩ bài toán này phải là CMN n x n + (4b + 2)  không phải là một số chính phương thì mới đúng ( 4b + 2 chỉ là dạng của cái số cộng thêm với b là số tự nhiên)
Nếu như vậy . ta có 
Giả sử n x n + 2017 là số chính phương nên
n x n + (4b + 2) = a x a ( a là số tự nhiên ) 
4b + 2 = (a x a) / (n x n)
4b + 2=  (a - n ) x (a + n ) 
Nếu a lẻ ; n chẵn và ngược lại thì ( a - n ) x ( a + n )bằng một số lẻ nhân với một số lẻ nên có kết quả là một số lẻ ( loại vì 4b + 2 là một số chẵn )
 Nếu a chẵn ; n chẵn thì (a - n ) x (a + n ) là một số chẵn nhân với một số chẵn nên kết quả là một số chẵn 
Vì số chẵn nhân với số chẵn nên lúc nào cũng chia hết cho 4 mà ( 4b + 2 ) không chia hết cho 4 nên n x n + (4b + 2) không thể có kết quả bằng a x a 
Vậy với n là số tự nhiên thì n x n + (4b + 2)  không phải là một số chính phương

19 tháng 4 2018


Theo mình nghĩ bài toán này phải là CMN n x n + (4b + 2)  không phải là một số chính phương thì mới đúng ( 4b + 2 chỉ là dạng của cái số cộng thêm với b là số tự nhiên)
Nếu như vậy . ta có 
Giả sử n x n + 2017 là số chính phương nên
n x n + (4b + 2) = a x a ( a là số tự nhiên ) 
4b + 2 = (a x a) / (n x n)
4b + 2=  (a - n ) x (a + n ) 
Nếu a lẻ ; n chẵn và ngược lại thì ( a - n ) x ( a + n )bằng một số lẻ nhân với một số lẻ nên có kết quả là một số lẻ ( loại vì 4b + 2 là một số chẵn )
 Nếu a chẵn ; n chẵn thì (a - n ) x (a + n ) là một số chẵn nhân với một số chẵn nên kết quả là một số chẵn 
Vì số chẵn nhân với số chẵn nên lúc nào cũng chia hết cho 4 mà ( 4b + 2 ) không chia hết cho 4 nên n x n + (4b + 2) không thể có kết quả bằng a x a 
Vậy với n là số tự nhiên thì n x n + (4b + 2)  không phải là một số chính phương


 

13 tháng 3 2018

mik hieu dc 3 cau roi

28 tháng 9 2015

A = 1 + 2.1 + 3.2.1 + 4.3.2.1 + 5! + ...+ n! = 33 + 5! + ...+ n!

Nhận xét: Từ 5! trở đi mỗi số hạng đều tận cùng là 0 (Vì chứa 5.2 = 10) => A có tận cùng là 3

=> A không thể là số chính phương

3 tháng 9 2017

\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)=\left(n^2+3n\right)^2-2\left(n^2+3n\right)=\left(n^2+3n-1\right)^2-1\)

là số liền trc của 1 số chính phương nên nó ko thể là số chính phương (đpcm)

9 tháng 4 2018

A = n n + 1 n + 2 n + 3

= n n + 3 n + 1 n + 2

= n 2 + 3n n 2 + 3n + 2

= n 2 + 3n 2 − 2 n 2 + 3n

= n 2 + 3n − 1 2 − 1 là số liền trc của 1 số chính phương nên nó ko thể là số chính phương (đpcm) 

29 tháng 3 2021

https://hoc247.net/hoi-dap/toan-6/chung-minh-a-1-1-2-1-3-1-100-khong-phai-so-tu-nhien-faq442360.html

Em tk trang đó nha

29 tháng 3 2021

Ta có 

\(A=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)

=> A > 1 do \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\ne0\)

\(\dfrac{1}{2}>\dfrac{1}{100}\)

\(\dfrac{1}{3}>\dfrac{1}{100}\)

................

\(\dfrac{1}{100}=\dfrac{1}{100}\)

=> \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}>\dfrac{1}{100}.99\) (do dãy có 99 số) = \(\dfrac{99}{100}\)

=> A < \(1+\dfrac{99}{100}< 1+\dfrac{100}{100}=1+1=2\)

=> 1 < A < 2

Vậy A không phải số tự nhiên