K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

Giả sử a > b

Gọi d = ƯCLN(a,b) (d thuộc N*)

=> a = d.m; b = d.n [(m;n)=1; m > n)

=> BCNN(a;b) = d.m.n

Ta có: BCNN(a;b) + ƯCLN(a;b) = 15

=> d.m.n + d = 15

=> d.(m.n + 1) = 15

=> 15 chia hết cho d

Mà d thuộc N* => d∈{1;3;5;15}d∈{1;3;5;15}

+ Với d = 1 thì m.n + 1 = 15 => m.n = 14

Mà (m;n)=1; m > n => [m=14;n=1m=7;n=2[m=14;n=1m=7;n=2=> [a=14;b=1a=7;b=2[a=14;b=1a=7;b=2

+ Với d = 3 thì m.n + 1 = 5 => m.n = 4

Mà (m;n)=1; m > n => {m=4n=1{m=4n=1=> {a=12b=3{a=12b=3

+ Với d = 5 thì m.n + 1 = 3 => m.n = 2

Mà (m;n)=1; m > n => {m=2n=1{m=2n=1=> {a=10b=5{a=10b=5

+ Với d = 15 thì m.n + 1 = 1 => m.n = 0, vô lý

Vậy các cặp giá trị (a;b) thỏa mãn đề bài là: (14;1) ; (1;14) ; (7;2) ; (2;7) ; (10;5) ; (5;10)

(a,b).[a,b]=a.b

=>(a,b)=135:45

=>(a,b)=3

ta có ƯCLN(a,b)=3

a=3.a'  b=3.b'

ta có

a.b=135

=>3.a'.3.b'=135

=>9.a'.b'=135

=>a'.b'=15

a'13515
b'1553

1

 =>

a391545
b451593

k cho mk nha

31 tháng 1 2022

UKM

^6^7g^7*(KHV C GTGFCCGttedx

8 tháng 12 2015

a) goi hai so la a ; b va a >b

vi UCLN(a,b)=18=>a=18k            ;       b=18q       (trong do UCLN (k,q)=1 va k>q)

=>a+b=162

18k+18q =162

18(k+q)=162

k+q=9

ta co bang sau   

 

k1234
q8765
a18365472
b14412610890

vay ...........

   
    
    

 

29 tháng 10 2016

21453 

52542000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

542454550212.100000000000000000000000000000000000000000000000000000000000000000000000000000