cho 3 số dương a,b,c thỏa mãn ab+bc+ca=3.Chứng minh rằng :(a+b)(b+c)(c+a)>=8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b>=2căn ab
b+c>=2*căn bc
a+c>=2*căn ac
=>(a+b)(b+c)(a+c)>=2*2*2*căn ab*bc*ac=8
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{ab+bc+ca}=a^2+b^2+c^2\)
Mặt khác ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge2\left(a+b+c+ab+bc+ca\right)-3=9\)
\(\Rightarrow a^2+b^2+c^2\ge3\)
Từ đó suy ra đpcm
Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)
\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)
\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Từ điều kiện đề bài ta có a b + b c + c a a b c = 3 ⇔ 1 a + 1 b + 1 c = 3
Áp dụng hai lần bất đẳng thức Côsi cho hai số dương, ta có:
a 2 + b c ≥ 2 a 2 . b c = 2 a b c ⇒ a a 2 + b c ≤ 2 2 a b c = 1 2 b c 1 b . 1 c ≤ 1 2 1 b + 1 c ⇒ a a 2 + b c ≤ 1 4 1 b + 1 c
Tương tự ta có:
b b 2 + c a ≤ 1 4 1 c + 1 a ; c c 2 + a b ≤ 1 4 1 a + 1 b ⇒ a a 2 + b c + b b 2 + c a + c c 2 + a b ≤ 1 2 1 a + 1 b + 1 c = 3 2 .
Xét vế trái, ta có: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{ab+bc+ca}{ab}+\frac{ab+bc+ca}{bc}+\frac{ab+bc+ca}{ca}\)(Do theo giả thiết thì ab + bc + bc = 1)
\(=\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{a}{b}+\frac{a}{c}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)+3\)
Khi đó, ta quy BĐT cần chứng minh về: \(\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{a}{b}+\frac{a}{c}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)\)\(\ge\sqrt{\frac{1}{a^2}+1}+\sqrt{\frac{1}{b^2}+1}+\sqrt{\frac{1}{c^2}+1}\)\(=\frac{\sqrt{a^2+1}}{a}+\frac{\sqrt{b^2+1}}{b}+\frac{\sqrt{c^2+1}}{c}\)
Theo BĐT Cauchy cho 2 số dương, ta có:
\(\frac{\sqrt{a^2+1}}{a}=\frac{\sqrt{a^2+ab+bc+ca}}{a}=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{a}\)\(\le\frac{\frac{a+b+a+c}{2}}{a}=\frac{2a+b+c}{2a}\)(1)
Tương tự ta có: \(\frac{\sqrt{b^2+1}}{b}\le\frac{2b+c+a}{2b}\)(2); \(\frac{\sqrt{c^2+1}}{c}\le\frac{2c+a+b}{2c}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được:
\(\frac{\sqrt{a^2+1}}{a}+\frac{\sqrt{b^2+1}}{b}+\frac{\sqrt{c^2+1}}{c}\)\(\le\frac{2a+b+c}{2a}+\frac{2b+c+a}{2b}+\frac{2c+a+b}{2c}\)
\(=3+\frac{1}{2}\left[\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{b}{c}\right)\right]\)
Đến đây, ta cần chứng minh \(\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{a}{b}+\frac{a}{c}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)\)\(\ge3+\frac{1}{2}\left[\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)+\left(\frac{c}{a}+\frac{c}{b}\right)\right]\)
\(\Leftrightarrow\frac{1}{2}\left[\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)+\left(\frac{c}{a}+\frac{c}{b}\right)\right]\ge3\)(Điều này hiển nhiên đúng vì theo BĐT Cauchy, ta có:
\(\frac{1}{2}\left[\left(\frac{c}{a}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{b}{c}\right)+\left(\frac{c}{a}+\frac{c}{b}\right)\right]\)\(\ge\frac{1}{2}.6\sqrt[6]{\frac{a^2b^2c^2}{a^2b^2c^2}}=3\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c = \(\frac{1}{\sqrt{3}}\)
Ta có:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-\sqrt[3]{abc}.\sqrt[3]{ab.bc.ca}\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\dfrac{1}{3}\left(a+b+c\right).\dfrac{1}{3}\left(ab+bc+ca\right)\)
\(=\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Do đó:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\dfrac{8}{9}.3.\left(a+b+c\right)\ge\dfrac{8}{3}\sqrt{3\left(ab+bc+ca\right)}=8\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)