Cho hình vuông ABCD. Trên hai cạnh AB, BC lấy hai điểm P và Q sao cho BP = BQ. Gọi H là hình chiếu của B trên đường thẳng CP
a) Chứng minh ∆BHP ~ ∆CHB
b) Chứng minh BH/BQ = CH/CD
c) Chứng minh ∆CHD ~ ∆BHQ. Từ đó suy ra góc DHQ = 90
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
Sửa đề: ΔBEC
Xét ΔHBC vuông tại H và ΔBEC vuông tại B có
góc HCB chung
=>ΔHBC đồng dạng với ΔBEC
2: ΔHBC đồng dạng với ΔBEC
=>CH/CB=BH/BE
=>CH/CD=BH/BF
a) Gọi E là trung điểm BK
Chứng minh được QE là đường trung bình \(\Delta\)KBC nên QE//BC => QE _|_ AB (vì BC_|_AB) và \(QE=\frac{1}{2}BC=\frac{1}{2}AD\)
Chứng minh AM=QE và AM//QE => Tứ giác AMQE là hình bình hành
Chứng minh AE//NP//MQ (3)
Xét \(\Delta AQB\)có BK và QE là 2 đường cao của tam giác
=> E là trực tâm tam giác nên AE là đường cao thứ 3 của tam giác AE _|_ BQ
=> BQ _|_ NP
b) Vẽ tia Ax vuông góc với AF. Gọi giao Ax và CD là G
Chứng minh \(\widehat{GAD}=\widehat{BAP}\)(cùng phụ \(\widehat{PAD}\))
=> \(\Delta\)ADG ~ \(\Delta\)ABP (gg) => \(\frac{AP}{AG}=\frac{AB}{AD}=2\Rightarrow AG=\frac{1}{2}AP\)
Ta có \(\Delta\)AGF vuông tại A có AD _|_ GF nên AG.AF=AD.GF(=2SAGF)
=> \(AG^2\cdot AF^2=AD^2\cdot GF^2\left(1\right)\)
Ta chia cả 2 vế củ (1) cho \(AD^2\cdot AG^2\cdot AF^2\)
Mà \(AG^2+AF^2=GF^2\)(định lý Pytago)
\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AG^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{\left(\frac{1}{2}AB\right)^2}=\frac{1}{\left(\frac{1}{2}AP\right)^2}+\frac{1}{AF^2}\)
\(\Rightarrow\frac{4}{AB^2}=\frac{4}{AP^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{AB^2}=\frac{1}{AP^2}+\frac{1}{4AF^2}\)
a) Xét tam giác AEQ và tam giác BEC có
EQ=EC
AEQ=BEC đối đỉnh
EA=EB
=> tam giác AEQ = tam giác BEC(c.g.g).
=> AQ=BC(cạnh tuognư ứng). (1)
Xét Tam giác AFP và tam giác CFB có
AF=CF
AFP=CFB đối đỉnh
FB=FP
=> tam giác AFB = tam giác CFB(c.g.c)
=> AP = BC (2)
từ (1) và (2) suy ra AP=AQ.