Chứng tỏ rằng:
A. Trong hai số tự nhiên liên tiếp có 1 số chia hết cho 2
B. Trong ba số tự nhiên liên tiếp có 1 số chia hết cho 3
C. Tổng của hai số tự nhiên liên tiếp thì không chia hết cho 2
D. Tổng của ba số tự nhiên liên tiếp là 1 số chia hết cho 3
E. Tổng của bốn số tự nhiên liên tiếp thì không chia hết cho 4
a,
Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh.
Nếu a không chia hết cho 2 thì a = 2k + 1 (k∈N)
Suy ra: a + 1 = 2k + 1 + 1 = 2k + 2
Ta có: 2k ⋮ 2; 2 ⋮ 2
Suy ra: (2k + 2) ⋮ 2 hay (a + 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2
Mik chỉ làm được câu a thôi nhưng vẫn mong bạn ủng hộ ^-^