K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4.

a.OB+ AB = OA

=> AB = OA - OB = 6-3 = 3 cm

b.Ta có: AB = OB = 3cm

=> A là trung điểm của OB

c.Ta có: AC + BC = AB

=> 1,5 + BC = 3

=> BC = 3-1,5 = 1,5 cm

9 tháng 8 2016

Đk:\(3x+1\ge0\)

\(\left(1\right)\Leftrightarrow\left(2x-3\right)^2=-\sqrt{3x+1}+x+4\left(2\right)\)

Đặt \(\sqrt{3x+1}=-\left(2y-3\right)\Rightarrow\left(2y-3\right)^2=3x+1\left(y\le\frac{3}{2}\right)\)

\(\left(2\right)\Leftrightarrow\left(2x-3\right)^2=2y+x+1\)

Ta có hệ:

\(\begin{cases}\left(2x-3\right)^2=2y+x+1\\\left(2y-3\right)^2=3x+1\end{cases}\)

\(\Leftrightarrow\left(x-y\right)\left(2x+2y-5=0\right)\)

\(\Leftrightarrow x=y;x=\frac{5}{2}-y\).Thay vào hệ trên là ok

2)Đặt \(\sqrt[3]{81x-8}=3y-2\Rightarrow81x-8=27y^3-54y^2+36y-8\)

\(\Rightarrow y^3-2y^2+\frac{4}{3}y=3x\)

Khi đó ta có hệ sau: 

\(\begin{cases}3y-2=x^3-2x^2+\frac{4}{3}x-2\\y^3-2y^2+\frac{4}{3}y=3x\end{cases}\)\(\Leftrightarrow\begin{cases}x^3-2x^2+\frac{4}{3}x=3y\\y^3-2y^2+\frac{4}{3}y=3x\end{cases}\)

Đối xứng nhé, ta chỉ cần  trừ vế theo vế hai phương trình của hệ là xong

 

11 tháng 8 2016

what

1 tháng 9 2016

\(2x+\frac{\pi}{6}=\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow2x=\frac{\pi}{3}+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{6}+\frac{k\pi}{2}\)

25 tháng 2 2022

Bài 5: 

CTPT: CxHyO

\(n_{CaCO_3}=\dfrac{40}{100}=0,4\left(mol\right)\)

PTHH: 2CxHyO + \(\dfrac{4x+y-2}{2}\)O2 --to--> 2xCO2 + yH2O

              \(\dfrac{0,4}{x}\)<--\(\dfrac{0,4\left(4x+y-2\right)}{4x}\)<------0,4

             Ca(OH)2 + CO2 --> CaCO3 + H2O

                                0,4<-----0,4

=> \(M_{C_xH_yO}=\dfrac{7,4}{\dfrac{0,4}{x}}=18,5x\left(g/mol\right)\)

=> y + 16 = 6,5x (1)

Có \(n_{O_2}=\dfrac{19,2}{32}=0,6\left(mol\right)\)

=> \(\dfrac{0,4\left(4x+y-2\right)}{4x}=0,6\)

=> 0,8x = 0,4y - 0,8 (2)

(1)(2) => x = 4; y = 10

CTPT: C4H10O

 

30 tháng 6 2016

\(B=\sqrt{371^2}+2\sqrt{31^2}-\sqrt{121^2}=371+2.31-121=371+62-121=312\)

17 tháng 11 2016

120 độ nhé

k mình nhé

17 tháng 11 2016

60 độ nha bạn

21 tháng 11 2023

Bài 2:

Sửa đề: \(y=f\left(x\right)=\left\{{}\begin{matrix}\dfrac{2x^2+3x-5}{x-1}nếux\ne1\\2a+1nếux=1\end{matrix}\right.\)

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{2x^2+3x-5}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x+5\right)\left(x-1\right)}{x-1}=\lim\limits_{x\rightarrow1}2x+5=2+5=7\)

f(1)=2a+1

Để hàm số liên tục khi x=1 thì \(f\left(1\right)=\lim\limits_{x\rightarrow1}f\left(x\right)\)

=>2a+1=7

=>2a=6

=>a=3

6 tháng 5 2021

Bài 5 hình 1: (tự vẽ hình nhé bạn)
a) Xét ΔABD và ΔACB ta có:
\(\widehat{BAD}\)\(\widehat{BAC}\) (góc chung)
\(\widehat{ABD}\)\(\widehat{ACB}\) (gt)
=> ΔABD ~ ΔACB (g-g)
=> \(\dfrac{AB}{AC}\) = \(\dfrac{BD}{CB}\) = \(\dfrac{AD}{AB}\) (tsđd)
b) Ta có: \(\dfrac{AB}{AC}\) = \(\dfrac{AD}{AB}\) (cm a)
=> \(AB^2\) = AD.AC
=> \(2^2\) = AD.4
=> AD = 1 (cm)
Ta có: AC = AD + DC (D thuộc AC)
      => 4   =   1   + DC
      => DC = 3 (cm)
c) Xét ΔABH và ΔADE ta có: 
   \(\widehat{AHB}\) = \(\widehat{AED}\) (=\(90^0\))
   \(\widehat{ADB}\) = \(\widehat{ABH}\) (ΔABD ~ ΔACB)
=> ΔABH ~ ΔADE
=> \(\dfrac{AB}{AD}\) = \(\dfrac{AH}{AE}\) = \(\dfrac{BH}{DE}\) (tsdd)
Ta có: \(\dfrac{S_{ABH}}{S_{ADE}}\) = \(\left(\dfrac{AB}{AD}\right)^2\)\(\left(\dfrac{2}{1}\right)^2\)= 4
=> đpcm

6 tháng 5 2021

Tiếp bài 5 hình 2 (tự vẽ hình)
a) Xét ΔABC vuông tại A ta có:
\(BC^2\) = \(AB^2\) + \(AC^2\)
\(BC^2\) = \(21^2\) + \(28^2\)
BC = 35 (cm)
b) Xét ΔABC và ΔHBA ta có:
\(\widehat{BAC}\) = \(\widehat{AHB}\) ( =\(90^0\))
\(\widehat{ABC}\) = \(\widehat{ABH}\) (góc chung)
=> ΔABC ~ ΔHBA (g-g)
=> \(\dfrac{AB}{BH}\) = \(\dfrac{BC}{AB}\) (tsdd)
=> \(AB^2\) = BH.BC
=> \(21^2\) = 35.BH
=> BH = 12,6 (cm)
c) Xét ΔABC ta có:
BD là đường p/g (gt)
=> \(\dfrac{AD}{DC}\) = \(\dfrac{AB}{BC}\) (t/c đường p/g)
Xét ΔABH ta có: 
BE là đường p/g (gt)
=> \(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (t/c đường p/g)
Mà: \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (cm b)
=> đpcm
d) Ta có: \(\left\{{}\begin{matrix}\widehat{HBE}+\widehat{BEH}=90^0\\\widehat{ABD}+\widehat{ADB=90^0}\\\widehat{HBE}=\widehat{ABD}\end{matrix}\right.\)
=> \(\widehat{BEH}=\widehat{ADB}\)
Mà \(\widehat{BEH}=\widehat{AED}\) (2 góc dd)
Nên \(\widehat{ADB}=\widehat{AED}\)
=> đpcm