K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2016

Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm của tiếp tuyến \(\Delta\) cần tìm

Ta có : \(y'=3x^2-12x+9\Rightarrow y'\left(x_0\right)=3x^2_0-12x_0+9\)

Ta có : \(x_0=1;y_0=2;y'\left(x_0\right)=0\)

Phương trình tiếp tuyến là :  \(y-2=0\left(x-1\right)\) hay y = 2

b) Ta có \(x_0=0\Rightarrow y_0=-2,y'\left(x_0\right)=9\)

Phương trình tiếp tuyến là :\(y+2=9\left(x-0\right)\) hay \(y=9x-2\)

c) Ta có \(x_0=-1\Rightarrow y_0=f\left(x_0\right)=-18;y'\left(x_0\right)=24\)

Phương trình tiếp tuyến là : \(y+18=24\left(x+1\right)\) hay \(y=24x+6\)

d) Ta có : \(y_0=6\Rightarrow x_0^3-6x^2_0+9x_0-2=-2\Leftrightarrow x_0^3-6x^2_0+9x_0=0\)

                                                                      \(\Leftrightarrow x_0=0;x_0=3\)

\(x_0=-1\) suy ra phương trình tiếp tuyến là : \(y=9x-2\)

\(x_0=3\Rightarrow y_0=-2,y'\left(x_0\right)=0\), suy ra phương trình tiếp tuyến là : \(y=2\)

Vậy có 2 tiếp tuyến là \(y=9x-2;y=2\)

e) Ta có : \(y'=0\Leftrightarrow\)\(\begin{cases}x=1\\x=3\end{cases}\)\(y''=6x-12\)

\(y''\left(1\right)=-6< 0;y"\left(3\right)=6>0\)

Suy ra đồ thị (C) có điểm cực tiểu là \(A\left(3;-2\right)\); điểm cực đại là \(B\left(1;2\right)\)

Giả sử \(M\left(a;a^3-6a^2+9a-2\right),a\ne3;1\)

Phương trình đường thẳng AB : \(2x+y-4=0\)

Ta có : \(S_{SBM}=\frac{1}{2}AB.d\left(M;AB\right)=6\)

\(\Leftrightarrow\frac{1}{2}\sqrt{2^2+\left(-4\right)^2}.\frac{\left|2a+a^3-6a^2+9a-2-4\right|}{\sqrt{2^2+1}}=6\)

\(\Leftrightarrow\left|a^3-6a^2+11a-6\right|=6\Leftrightarrow\left[\begin{array}{nghiempt}a=0\Rightarrow M\left(0;-2\right)\\a=4\Rightarrow M\left(4;2\right)\end{array}\right.\)

* Phương trình tiếp tuyến với (C) tại điểm M(0;-2) là : \(y+2=y'\left(0\right)\left(x-0\right)\) hay \(y=9x-2\)

* Phương trình tiếp tuyến với (C) tại điểm M(4;2) là : \(y-2=y'\left(4\right)\left(x-4\right)\) hay \(y=9x-34\)

 
6 tháng 7 2017

- Hàm số đã cho xác định với ∀x ≠ 1.

- Ta có: 

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 4)

- Gọi M ( x 0 ;   y 0 )  là tọa độ tiếp điểm, suy ra phương trình tiếp tuyến của (C):

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 4)

- Tiếp tuyến tạo với 2 trục tọa độ lập thành một tam giác cân nên hệ số góc của tiếp tuyến bằng ± 1. Mặt khác: y ' ( x 0 )   <   0 , nên có: y ' ( x 0 )   =   - 1 .

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 4)

- Vậy, có 2 tiếp tuyến thỏa mãn đề bài: y = -x - 1; y = -x + 7.

Chọn D

x^2+(y-1)^2=4

=>R=2 và I(0;1)

A(1;1-m) thuộc (C)

y'=4x^3-4mx

=>y'(1)=4-4m

PT Δsẽ là y=(4-m)(x-1)+1-m

Δ luôn đi qua F(3/4;0) và điểm F nằm trong (λ)

Giả sử (Δ) cắt (λ) tại M,N

\(MN=2\sqrt{R^2-d^2\left(I;\Delta\right)}=2\sqrt{4-d^2\left(I;\Delta\right)}\)

MN min khi d(I;(Δ)) max

=>d(I;(Δ))=IF 

=>Δ vuông góc IF

Khi đó, Δ có 1 vecto chỉ phương là: vecto u vuông góc với vecto IF=(3/4;p-1)

=>vecto u=(1;4-4m)

=>1*3/4-(4-4m)=0

=>m=13/16

22 tháng 7 2019

Chọn A

 Phương trình tiếp tuyến tại điểm M là d: 

Đồ thị có hai tiệm cận có phương trình lần lượt là  d 1 : x = 1;  d 2 : y = 2

d cắt d 1  tại điểm 

d cắt d 2  tại điểm Q(2a-1;2),  d 1  cắt  d 2  tại điểm I(1;2)

Ta có 

19 tháng 11 2019

Đáp án B

Tâm đối xứng của đồ thị (C) là giao điểm hai đường tiệm cận. (C) có tiệm cận đứng là x=-1, tiệm cận ngang là y=2 => I(-1;2) 

Ta có: y ' = 1 x + 1 2 ⇒  PTTT tại điểm M a ; b  là y = 1 a + 1 2 x − a + 2 a + 1 a + 1 . Từ đây ta xác định được giao điểm của PTTT tại M a ; b  và hai tiệm cận x = − 1 , y = 2  là A − 1 ; 2 a a + 1 , B 2 a + 1 ; 2 .

Độ dài các cạnh của Δ I A B  như sau

  I A = 2 a a + 1 − 2 = 2 a + 1 I B = 2 a + 1 + 1 = 2 a + 1 A B = 2 1 a + 1 2 + a + 1 2 ⇒ S I A B = 1 2 I A . I B = 2 ;

P = I A + I B + A B 2 = 1 a + 1 + a + 1 + 1 a + 1 2 + a + 1 2

Áp dụng bất đẳng thức Cosi ta có p ≥ 2 + 2  đạt được ⇔ a + 1 = 1 ⇔ a = 0 ⇒ b = 1 a = − 2 ⇒ b = 3 ⇒ a + b = 1