Cho tam giác ABC có AC = CB = 10 cm, AB = 12 cm. Kẻ CI vuông góc với AB (E thuộc AB). a) chứng minh rằng IA = IB. b) tinh độ dài IC. c Kẻ IH vuông góc với AC (H thuộc AC), kẻ IK vuông góc với BC (K thuộc BC). So sánh các độ dài IH và IK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC có CA = CB nên cân tại C
Do đó CI vừa là đường cao vừa là trung tuyến
=> I là trung điểm AB
=> IA = IB
Vậy IA = IB
b) Ta có:
\(IA=\frac{1}{2}AB=\frac{1}{2}.12=6\left(cm\right)\)
\(\Rightarrow IA^2=6^2=36\left(cm\right)\)
Xét tam giác CIA vuông tại I có:
\(CI^2+IA^2=AC^2\)(Định lý Py-ta-go)
\(\Rightarrow IC^2+36=10^2=100\)
\(IC^2=100-36=64=8^2\)
Mà IC>0 nên IC =8
Vậy IC = 8cm
\(IC^2+\)
Bạn tự vẽ hình nha !
a) \(\Delta\) ABC có CA = CB = 10 cm
=> \(\Delta\) ABC cân tại C có CI là đường cao nên CI cũng là đường trung tuyến ứng với cạnh AB => I là trung điểm của AB hay IA = IB
b) Có IA = IB ( cm câu a) = \(\frac{1}{2}\)AB = \(\frac{1}{2}.12\) = 6 (cm)
Áp dụng Py - ta - go vào \(\Delta\)vuông ACI có:
AC2 = AI2 + CI2
hay 102 = 62 + CI2
=> CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}\) = 8 cm
a)Ta co :CA=CB=10cm
Nen tam giac ABC can tai C
Ma : CI vuong goc voi AB tai i
Nen:CI là đường cao
Do đó CI là đường trung tuyến của tam giác ABC
Vay: AI= BI
DE WA HK LM NUA
a) Xét \(\Delta\)AIC vuông tại I và \(\Delta\)BIC vuông tại I
có : CA = CB ( giả thiết)
CI : chung
=> \(\Delta\)AIC =\(\Delta\)BIC ( cạnh huyền - cạnh góc vuông)
=> IA =IB ( cạnh tương ứng)
b)IC không tính dc vì thiếu dữ kiện ( AB =?) hoặc cái gì nữa nhé
c) Đề sai ;IK vuông góc CB nhé
Theo câu a => góc ACI = góc BCI ( góc tương ứng)
Xét \(\Delta\)HCI vuông tại Hvà \(\Delta\)KCI vuông tại K có :
CI chung ; HCI = góc KCI
=> \(\Delta\)HCI =\(\Delta\)BCI ( cạnh huyền - góc nhọn)
=> IH = IK
a)Ta có tam giác ABC cân tại C nên
=>IC là đường trung tuyến
=>IA=IB
b)Áp dụng định lí Py-ta-go vào tam giác IBC vuông tại I, ta có:
BC2=IB2+IC2
102=62+IC2
100=36+IC2
=>IC2=100-36
=>IC2=64
=>IC=\(\sqrt{64}\)=8(cm)
c0 Tam giác ABC cân tại góc A
=>Góc C1=góc C2
Xét hai tam giác vuông CIK và CIA, ta có:
GócC1=góc C2(cmt)
IC: cạnh chung
=>tam giácCIK= tam giác CIH (cạnh huyền_góc nhọn)
=>IH=IK (hai cạnh tương ứng)
thanh thảo trả lời sai rồi
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
THẾ MÀ CÓ 6 NGƯỜI BẢO LÀ ĐÚNG
a: Ta có: ΔCAB cân tại C
mà CI là đường cao
nên I là trung điểm của AB
b: IA=IB=AB/2=6(cm)
=>CI=8(cm)
c: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó: ΔCHI=ΔCKI
Suy ra: IH=IK
c) Vì CA=CB=10cm ⇒ ΔCAB cân
⇒\(\widehat{A}=\widehat{B}\)
Xét △ AHI và △ BKI
IA=IB(cmt)
\(\widehat{A}=\widehat{B}\)(cmt)
\(\widehat{AHI}=\widehat{BKI}=90^0\) (gt)
⇒ △ AHI = △ BKI(ch-gn)
⇒ IH=IK(...)
a, Xét tam giác CIA vuông tại I và tam giác CIB vuông tại I:
+ CA=CB ( cmt)
+ AI là cạnh chung
=> tam giác CIA= tam giác CIB ( CH-CGV)
=> IA=IB ( 2 cạnh tương ứng)
b, Ta có: IA= IB ( cmt)
mà IA+IB=AB
==> IA=IB= \(\dfrac{12}{2}\)=6 cm
Trong tam giác CIB vuông tại I, ta có::
IB\(^2\)+IC\(^2\)=BC\(^2\) ( ĐL Py-ta-go đảo)
6\(^2\)+ IC\(^2\)=10\(^2\)
36+IC\(^2\)=100
==> IC\(^2\)=64
=====> IC= 8 cm
c, Trong tam giác ABC, ta có: CA= CB=10cm (gt)
=> tam giác ABC cân tại C
==> góc CAB= góc CBA
Xét tam giác IAH vuông tại H và tam giác IBK vuông tại K:
+ IA=IB (cmt)
+ góc CAB= góc CBA ( cmt)
==> tam giác IAH= tam giác IBK ( CH-GN)
===> IH=IK ( 2 cạnh tương ứng)
a) Xét hai t/g vuông t/gACI và t/gBCI có CI chung
=>AC=BC(gt)
=>t/gACI=t/gBCI(ch-cgv)
=>IA=IB
=>đpcm
b)Xét 2 t/g vuông t/gIHA và t/gIKB
=>IA=IB
^A=^B(CA=CB=>t/gABCcân)
=>t/gIHA=t/gIKB (cgv-gnk)
=>IH=IK
=>đpcm
c)Ta có IA=IB=122=6(cm)
Áp dụng định lý Pytago vào t/gACI (^I=90o)
Ta có IA2+IC2=AC2 hay 62+IC2=102
=>IC2=102-62
=>IC2=64cm
=>IC=8cm
d)
Ta có t/gCHI=t/gCKI
=>CH=CK
=>CHK cân => gCHK=180o(1)
Mà t/gABC=gCAB(180-ABC/2) (2)
Từ (1) và (2) =>HK //AB.
a: Ta có: ΔCAB cân tại C
mà CI là đường cao
nên I là trung điểm của AB
hay IA=IB
b: AB=12cm
nên IA=6cm
=>IC=8cm
c: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó: ΔCHI=ΔCKI
Suy ra: IH=IK
Do `CA=CB=10cmnênnênΔ ABCcânđỉnhCnêngóccânđỉnhCnêngócCAB=gócgócCBA`
hay góc HAIHAI=góc KBIKBI
Xét Δ vuông IHAIHA và Δ IKBIKB có:
IA=IBIA=IB (chứng minh trên)
góc HAIHAI=góc KBIKBI
Góc AHI=BKI=90o90o
⇒ Δ IHAIHA = Δ IKBIKB (ch-gn)
⇒IH=IKIH=IK (hai cạnh tương ứng bằng nhau)